[1] 李 军, 路洪洲, 易红亮, 等. 乘用车轻量化及微合金化钢板的应用[M]. 北京: 北京理工大学出版社, 2015. Li Jun, Lu Hongzhou, Yi Hongliang, et al. Lightweight of Passenger Car and Niobium-microalloying Steel[M]. Beijing: Beijing Institute of Technology Press, 2015. [2] Daniel Alexandre da Costa Ximenes, Luciano Pessanha Moreira, José Eduardo Ribeiro de Carvalho, et al. Phase transformation temperatures and Fe enrichment of a 22MnB5 Zn-Fe coated steel under hot stamping conditions[J]. Journal of Materials Research and Technology, 2020, 9(1): 629-635. [3] 李光霁, 刘新玲. 汽车轻量化技术的研究现状综述[J]. 材料科学与工艺, 2020, 28(5): 47-61. Li Guangji, Liu Xinling. Literature review on research and development of automotive lightweight technology[J]. Materials Science and Technology, 2020, 28(5): 47-61. [4] Chen Xiaoming, Wang Xiaonan, Sun Qian, et al. Improving the mechanical properties of PHS laser welded joints by adding Ni foil to suppress δ-ferrite[J]. Journal of Materials Research and Technology, 2020, 9(3): 5184-5193. [5] Taylor T, Clough A. Critical review of automotive hot-stamped sheet steel from an industrial perspective[J]. Materials Science and Technology, 2018, 34(7): 809-861. [6] 赵景轩, 梁 健, 张玲玲, 等. 奥氏体化工艺对22MnB5热成形钢锌基镀层结构及裂纹的影响[J]. 金属热处理, 2024, 49(11): 296-301. Zhao Jingxuan, Liang jian, Zhang Lingling, et al. Effect of austenitizing process on structure and cracks of galvanized layer on 22MnB5 hot stamped steel[J]. Heat Treatment of Metals, 2024, 49(11): 296-301. [7] 王国栋. 金属材料先进热处理装备、工艺和产品研发[J]. 金属热处理, 2016, 41(1): 1-7. Wang Guodong. Research and development of advanced heat treatment equipment, technology and product for metal materials[J]. Heat Treatment of Metals, 2016, 41(1): 1-7. [8] 林 利, 刘仁东, 徐 鑫, 等. 不等温热成形B柱对汽车侧碰性能的影响研究[J]. 上海金属, 2014, 36(1): 6-10. Lin Li, Liu Rendong, Xu Xin, et al. Research on the effect of tailored tempering hot forming B pillar on side impact performance[J]. Shanghai Metals, 2014, 36(1): 6-10. [9] 余海燕, 蒋忠伟. A柱加强板热冲压延迟开裂机理[J]. 锻压技术, 2017, 42(3): 40-44. Yu Haiyan, Jiang Zhongwei. Mechanism of delayed fracture for A-pillar in hot stamping[J]. Forging and Stamping Technology, 2017, 42(3): 40-44. [10] 蓝毓哲. 生产流程对热成形钢组织和力学性能影响研究[D]. 武汉: 武汉科技大学, 2019. Lan Yuzhe. Effect of making process on microstructure and mechanical properties of hot stamping steel[D]. Wuhan: Wuhan University of Science and Technology, 2019. [11] 马光宗, 马德刚, 李建英, 等. 奥氏体化温度对含铌热成形钢组织性能的影响[J]. 金属热处理, 2023, 48(12): 100-104. Ma Guangzong, Ma Degang, Li Jianying, et al. Effect of austenitizing temperature on microstructure and properties of niobium containing hot-formed steel[J]. Heat Treatment of Metals, 2023, 48(12): 100-104. [12] Ryde L. Application of EBSD to analysis of microstructures in commercial steels[J]. Materials Science and Technology, 2006, 22(11): 1297-1306. [13] Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Materialia, 2003, 51(6): 1789-1799. [14] Wang Yingjun, Sun Junjie, Jiang Tao, et al. A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility[J]. Acta Materialia, 2018, 158: 247-256. [15] Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels[J]. Materials Science and Engineering, 2006, 438: 237-240. [16] Xu Yuantao, Nie Yihong, Wang Mingjia, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging[J]. Acta Materialia, 2017, 131: 110-122. [17] Kundu A, Field D P, Chakraborti P C. Effect of strain and strain rate on the development of deformation heterogeneity during tensile deformation of a solution annealed 304 LN austenitic stainless steel: An EBSD study[J]. Materials Science and Engineering, 2020, 773: 138854. [18] Zhang K, Liu X B, Fan P, et al. Characterization of geometrically necessary dislocation evolution during creep of P91 steel using electron backscatter diffraction[J]. Materials Characterization, 2023, 195: 112501. |