[1] Rack H J, Kalish D. The strength and fracture toughness of 18Ni(350) maraging steel[J]. Metallurgical and Materials Transactions B, 1971, 2: 3011-3020. [2] Galindo-Nava E I, Rainforth W M, Rivera-Díaz-Del-Castillo P E J. Predicting microstructure and strength of maraging steels: Elemental optimisation[J]. Acta Materialia, 2016, 117: 270-285. [3] Decker R F, Floreen S. Maraging steels-the first 30 years[M]//Maraging Steels: Recent Developments and Applications. Warrendale, PA: The Minerals, Metals & Materials Society, 1988: 1-38. [4] Hamaker J C, Bayer A M. Applications of maraging steels[J]. Cobalt, 1968, 24(3): 3-12. [5] 姜 越, 尹钟大, 朱景川, 等. 马氏体时效不锈钢的发展现状[J]. 特殊钢, 2003, 24(3): 1-5. Jiang Yue, Yin Zhongda, Zhu Jingchuan, et al. Development status of maraging stainless steel[J]. Special Steel, 2003, 24(3): 1-5. [6] Imrie W M. Maraging steels in the British aerospace industry[J]. Metal Forming, 1970, 37(1): 15-41. [7] Wang B, Zhang P, Duan Q Q, et al. Optimizing the fatigue strength of 18Ni maraging steel through ageing treatment[J]. Materials Science and Engineering A, 2017, 707: 674-688. [8] Moriyama M, Takaki S, Tokunaga Y. Age hardening behavior and fatigue property of 18%Ni maraging steel[J]. Journal of the Society of Materials Science, Japan, 1994, 43(492): 1106-1112. [9] Hilditch T, Beladi H, Hodgson P, et al. Role of microstructure in the low cycle fatigue of multi-phase steels[J]. Materials Science and Engineering A, 2012, 534: 288-296. [10] Hilditch T B, Timokhina I B, Robertson L T, et al. Cyclic deformation of advanced high-strength steels: Mechanical behavior and microstructural analysis[J]. Metallurgical & Materials Transactions A, 2009, 40(2): 342-353. [11] 周红伟, 白凤梅, 杨 磊, 等. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948. Zhou Hongwei, Bai Fengmei, Yang Lei, et al. Low-cycle fatigue behavior of 1100 MPa grade high-strength steel[J]. Acta Metallurgica Sinica, 2020, 56(7): 937-948. [12] Sowards J W, Pfeif E A, Connolly M J, et al. Low-cycle fatigue behavior of fiber-laser welded, corrosion-resistant, high-strength low alloy sheet steel[J]. Materials & Design, 2017, 121: 393-405. [13] Rohit B, Muktinutalapati N R. Fatigue behavior of 18%Ni maraging steels: A review[J]. Journal of Materials Engineering and Performance, 2021, 30(4): 2341-2354. [14] Swam L F V, Grant R M P J, Grant N J. Fatigue behavior of maraging steel 300[J]. Metallurgical Transactions A, 1975, 6(1): 45-54. [15] Wang W, Yan W, Duan Q, et al. Study on fatigue property of a new 2.8 GPa grade maraging steel[J]. Materials Science and Engineering A, 2010, 527(13/14): 3057-3063. [16] 侯 杰, 董建新, 姚志浩. 夹杂物对超高强度钢应力应变场的影响[J]. 工程科学学报, 2017, 39(7): 1027-1035. Hou Jie, Dong Jianxin, Yao Zhihao. Influence of inclusion on stress and strain fields in ultra-high strength steel[J]. Chinese Journal of Engineering, 2017, 39(7): 1027-1035. [17] 尹钟大, 陈世忠. 13Ni马氏体时效钢的疲劳性能[J]. 金属科学与工艺, 1990, 9(3): 12-17. Yin Zhongda, Chen Shizhong, The fatigue property of 13Ni maraging steel[J]. Metal Science and Technology, 1990, 9(3): 12-17. [18] Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32. [19] 李瞬酩. 机械疲劳与可靠性设计[M]. 北京: 科学出版社, 2007. Li Shunming. Mechanical Fatigue and Reliability Design[M]. Beijing: Science Press, 2007. [20] 班慧勇, 杨晓峰, 石永久. 基于应变能的不锈钢复合钢材低周疲劳性能研究[J]. 建筑结构学报, 2023, 44(12): 216-224. Ban Huiyong, Yang Xiaofeng, Shi Yongjiu. Strain energy-based low-cycle fatigue behaviour analyses of stainless-clad bimetallic steel[J]. Journal of Building Structures, 2023, 44(12): 216-224. [21] 张亚军. 10CrNiMo高强钢的低周疲劳特性[J]. 北京科技大学学报, 2011, 33(1): 22-27. Zhang Yajun. Low cycle fatigue characteristic of 10CrNiMo high strength steel[J]. Journal of University of Science and Technology Beijing, 2011, 33(1): 22-27. [22] 周港宝, 卞 双, 陈震宇, 等. 先进超超临界机组用Inconel 617与C-HRA-2合金高温低周疲劳性能试验研究[J]. 动力工程学报, 2022, 42(5): 475-483. Zhou Gangbao, Bian Shuang, Chen Zhenyu, et al. Experimental study on high-temperature low cycle fatigue performance of Inconel 6l7 and C-HRA-2 alloys for advanced ultra supercritical units[J]. Journal of Chinese Society of Power Engineering, 2022, 42(5): 475-483. [23] Zhang Q, Zuo Z, Liu J. High-temperature low-cycle fatigue behaviour of a cast Al-12Si-CuNiMg alloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2013, 36(7): 623-630. [24] 程 佩, 汪先送, 林 波, 等. 压力对Al-5.0Cu-0.4Mn合金疲劳塑性应变能的影响[J]. 特种铸造及有色合金, 2012, 32(8): 743-746. Cheng Pei, Wang Xiansong, Lin Bo, et al. Influence of pressure on the elastic strain energy of Al-5.0Cu-0.4Mn alloy in low cycle fatigue[J]. Special Casting & Nonferrous Alloys, 2012, 32(8): 743-746. [25] Kruml T, Polák J. Fatigue softening of X10CrAl24 ferritic steel[J]. Materials Science and Engineering A, 2001, 319: 564-568. [26] Salman S, Findik F, Topuz P. Effects of various austempering temperatures on fatigue properties in ductile iron[J]. Materials and Design, 2007, 28(7): 2210-2214. [27] Gauthier P, Rabaudy H D, Auvinet J. Secondary cracking process during fatigue crack propagation[J]. Engineering Fracture Mechanics, 1973, 5(4): 977-981. [28] Zhang Q, Zhang X P. The crack nature analysis of primary and secondary cracks: A numerical study based on moment tensors[J]. Engineering Fracture Mechanics, 2019, 210: 70-83. [29] 钟炳文. 超高强度钢强化层的微观组织变化和疲劳裂纹扩展行为的透射电镜观察[J]. 航空材料学报, 1992, 12(1): 29-36. Zhong Bingwen. Observation on fine structure of work-hardened layers and fatigue crack propagation behavior in ultra-high strength steels by TEM[J]. Journal of Aeronautical Materials, 1992, 12(1): 29-36. [30] 徐 杰. 液态铅铋环境中15-15Ti奥氏体不锈钢低周疲劳行为研究[D]. 合肥: 中国科学技术大学, 2019. Xu Jie. Low cycle fatigue behavior of 15-15Ti austenitic stainless steel in lead-bismuth eutectic[D]. Hefei: University of Science and Technology of China, 2019. [31] Guo Z, Sha W, Li D. Quantification of phase transformation kinetics of 18wt.%Ni C250 maraging steel[J]. Materials Science and Engineering A, 2004, 373(1-2): 10-20. [32] 李媛媛. ZG20SiMn铸钢的疲劳行为研究[D]. 沈阳: 沈阳工业大学, 2014. Li Yuanyuan. Investigation on fatigue behavior of ZG20SiMn cast steel[D]. Shenyang: Shenyang University of technology, 2014. [33] 胡正飞, 吴杏芳, 王春旭. 新型高钴镍合金钢的微观组织和性能[J]. 材料研究学报, 2002(3): 331-336. Hu Zhengfei, Wu Xingfang, Wang Chunxu. Properties and microstructure of isothermal tempered high CoNi alloy[J]. Chinese Journal of Materials Research, 2002(3): 331-336. [34] 刘金旭, 胡丹丹, 郑秀华, 等. 析出相形态对Ni-Ti形状记忆合金力学性能的影响[J]. 稀有金属材料与工程, 2013, 42(5): 942-946. Liu Jinxu, Hu Dandan, Zheng Xiuhua, et al. Effect of precipitation phase morphology on mechanical properties of Ni-Ti shape memory alloy[J]. Rare Metal Materials and Engineering, 2013, 42(5): 942-946. |