[1] 黄 旭, 朱知寿, 王红红. 先进航空钛合金材料与应用[M]. 北京: 国防工业出版社, 2012. [2] 沙爱学, 王庆如, 李兴无. 航空用高强度结构钛合金的研究及应用[J]. 稀有金属, 2004, 28(1): 239-242. Sha Aixue, Wang Qingru, Li Xingwu. Research and application of high-strength titanium alloys used in airplane structure[J]. Chinese Journal of Rare Metals, 2004, 28(1): 239-242. [3] 钱九红. 航空航天用新型钛合金的研究发展及应用[J]. 稀有金属, 2000, 24(3): 218-223. Qian Jiuhong. Application and development of new titanium alloys for aerospace[J]. Chinese Journal of Rare Metals, 2000, 24(3): 218-223. [4] 艾剑波, 郭俊贤, 覃海鹰, 等. Ti1023主桨毂中央件的微动疲劳及其防护[J]. 直升机技术, 2011(2): 25-29. Ai Jianbo, Guo Junxian, Qin Haiying, et al. Fretting fatigue of Ti1023 main rotor hub central part and protection[J]. Helicopter Technique, 2011(2): 25-29. [5] Li Lintao, Wang Zhihua, Ma Wei. Experimental study on the high temperature impact torsional behavior of Ti-1023 alloy[J]. Materials, 2022, 15(11): 3847. [6] Wang Qiang, Yang Chen, Wu Jie, et al. Phase transformation behavior of Ti-1023 under static heat treatment and dynamic thermo-mechanical coupling[J]. Materials Characterization, 2022, 192: 112248. [7] 高 平, 赵永庆, 于兰兰, 等. TB6钛合金铸锭中的偏析[J]. 热加工工艺, 2009, 38(17): 13-16. Gao Ping, Zhao Yongqing, Yu Lanlan, et al. Segregation of TB6 alloy ingots[J]. Hot Working Technology, 2009, 38(17): 13-16. [8] 何 勇, 胡 锐, 罗 伟, 等. 搅拌磁场对 Ti-1023 合金铸锭宏观组织和 Fe 元素宏观偏析的影响[J]. 稀有金属材料与工程, 2017, 46(10): 3063-3067. He Yong, Hu Rui, Luo Wei, et al. Effect of stirring magnetic field on the macrostructure and macrosegregation of Fe element of Ti-1023 alloy ingot[J]. Rare Metal Materials and Engineering, 2017, 46(10): 3063-3067. [9] 杨志军, 寇宏超, 李金山, 等. 真空自耗电弧重熔过程中 Ti-10V-2Fe-3Al 合金的宏观偏析行为[J]. 材料工程与性能杂志, 2011, 20(1): 65-70. Yang Zhijun, Kou Hongchao, Li Jinshan, et al. Macrosegregation behavior of Ti-10V-2Fe-3Al alloy during vacuum consumable arc remelting process[J]. Journal of Materials Engineering and Performance, 2011, 20(1): 65-70. [10] 高 平, 赵永庆, 于兰兰, 等. 热处理对TB6合金铸锭偏析的影响[J]. 热加工工艺, 2009, 38(24): 135-137. Gao Ping, Zhao Yongqing, Yu Lanlan, et al. Influence of heat treatment on the segregation of TB6 alloy ingots[J]. Hot Working Technology, 2009, 38(24): 135-137. [11] 范 凯, 吴立成, 李建军, 等. VAR过程中浮力驱动流动引起的钛合金宏观偏析数值模拟[J]. 稀有金属材料与工程, 2020, 49(3): 871-877. Fan Kai, Wu Licheng, Li Jianjun, et al. Numerical simulation of macrosegregation caused by buoyancy driven flow during VAR process for titanium alloys[J]. Rare Metal Materials and Engineering, 2020, 49(3): 871-877. [12] 吕逸帆, 孟祥军, 李士凯, 等. TB6合金β斑研究概述[C]//第十三届全国钛及钛合金学术交流会论文集. 2008: 544-548. [13] 史蒲英, 刘向宏, 李建伟, 等. β斑对TB6钛合金性能及拉伸变形行为的影响[J]. 稀有金属材料与工程, 2023, 52(5): 1925-1931. Shi Puying, Liu Xianghong, Li Jianwei, et al. Influence of β flecks on the properties and tensile deformation behavior of TB6 titanium alloy[J]. Rare Metal Materials and Engineering, 2023, 52(5): 1925-1931. [14] Tong Jianbo, Zhang Chaojie, Chen Junshu, et al. Effects of homogenization heat treatment on the Fe micro-segregation in Ti-1023 titanium alloy[J]. Materials, 2023, 16(14): 4911. [15] 颜孟奇, 陈立全, 杨 平, 等. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890. Yan Mengqi, Chen Liquan, Yang Ping, et al. Effect of hot deformation parameters on the evolution of microstructure and texture of β phase in TC18 titanium alloy[J]. Acta Metallurgica Sinica, 2021, 57(7): 880-890. |