[1] 张卫华, 郭继周. 深海科技发展对未来战争的影响及战略选择[J]. 国防科技, 2023, 44(1): 12-17. Zhang Weihua, Guo Jizhou. The impact of the development of deep-sea technology on future war and its strategic choice[J]. National Defense Technology, 2023, 44(1): 12-17. [2] 李 猛. “双碳”目标下我国海洋碳汇政策体系构建路径探索: 以抢占海洋碳汇国际制高点为主要视角[J/OL]. 海洋湖沼通报, 2024-11-04. https://link.cnki.net/urlid/37.1141.P.20241101.1617.004. Li Meng. Exploration on the construction path of our country's ocean carbon sink policy system under the "double carbon" goal: From the main perspective of seizing the international commanding height of ocean carbon sink[J/OL]. Transactions of Oceanology and Limnology, 2024-11-04. https://link.cnki.net/urlid/37.1141.P.20241101.1617.004. [3] 李艳庆. 习近平关于维护海洋权益重要论述的理论渊源、基本内涵与价值意蕴[J]. 海南热带海洋学院学报, 2025, 32(1): 3-11. Li Yanqing. Xi Jinping's important discourse on safeguarding maritime rights and interests: Theoretical origin, basic connotation, and value implication[J]. Journal of Hainan Tropical Ocean University, 2025, 32(1): 3-11. [4] 阎 军, 苏 琦, 许 琦, 等. 海洋工程典型装备智能化研究进展[J]. 科技导报, 2024, 42(13): 16-26. Yan Jun, Su Qi, Xu Qi, et al. Overview on research progress of typical intelligent equipment in marine engineering[J]. Science and Technology Review, 2024, 42(13): 16-26. [5] 李红涛. 新兴海洋工程装备发展动向[J]. 中国船检, 2024(9): 43-48. [6] 康永林, 朱国明, 姜 敏, 等. 板坯连铸大辊径大压下及低压缩比轧制特厚板[J]. 钢铁, 2022, 57(7): 95-105. Kang Yonglin, Zhu Guoming, Jiang Min, et al. Slab continuous casting by big roll heavy reduction and extra thick plate rolled by low compression ratio[J]. Iron and Steel, 2022, 57(7): 95-105. [7] 高志玉, 樊献金, 窦春岳, 等. 特厚板厚度方向形变传递规律的仿真分析[J]. 钢铁, 2019, 54(4): 49-54, 62. Gao Zhiyu, Fan Xianjin, Dou Chunyue, et al. Simulation analysis on transfer law of deformation in thickness direction of ultra-heavy plate[J]. Iron and Steel, 2019, 54(4): 49-54, 62. [8] 郑海明, 许少普, 张 涛, 等. Q460GJCZ35特厚板Z向性能不合原因分析及优化措施[J]. 轧钢, 2022, 39(1): 88-93, 97. Zheng Haiming, Xu Shaopu, Zhang Tao, et al. Causes analysis and optimization measures of unqualified Z-direction property of Q460GJCZ35 ultra-heavy plate[J]. Steel Rolling, 2022, 39(1): 88-93, 97. [9] 李 班, 张 鑫, 陈祖政, 等. 浅析加工工艺对特厚板厚度方向变形的影响[J]. 宽厚板, 2023, 29(2): 35-41. Li Ban, Zhang Xin, Chen Zuzheng, et al. The brief analysis of processing technology influence on through-thickness deformation of extra heavy steel plate[J]. Wide and Heavy Plate, 2023, 29(2): 35-41. [10] 唐郑磊, 王福明, 许少普, 等. Q550D低碳贝氏体钢特厚板热处理工艺研究[J]. 轧钢, 2024, 41(2): 13-22. Tang Zhenglei, Wang Fuming, Xu Shaopu, et al. Study on heat treatment process of Q550D low carbon bainitic steel heavy-gauge plate[J]. Steel Rolling, 2024, 41(2): 13-22. [11] 张兴红, 薛 欣, 张 恒, 等. 高强度海工钢特厚板差温轧制工艺[J]. 塑性工程学报, 2023, 30(3): 59-66. Zhang Xinghong, Xue Xin, Zhang Heng, et al. Gradient temperature rolling process of high strength marine steel extra thick plate[J]. Journal of Plasticity Engineering, 2023, 30(3): 59-66. [12] 王国栋. 新一代TMCP技术的发展[J]. 轧钢, 2012, 29(1): 1-8. Wang Guodong. Development of a new generation TMCP technology[J]. Steel Rolling, 2012, 29(1): 1-8. [13] 朱建业. 中厚板TMCP工艺及其应用进展分析[J]. 山西冶金, 2022, 45(1): 158-159, 162. Zhu Jianye. Analysis of TMCP process and its application progress of medium and heavy plate[J]. Shanxi Metallurgy, 2022, 45(1): 158-159, 162. [14] 刘坚锋, 熊 雄, 徐李军, 等. 基于降低轧机负荷的高性能特厚钢板轧制工艺[J]. 中国冶金, 2022, 32(1): 83-89. Liu Jianfeng, Xiong Xiong, Xu Lijun, et al. Rolling process of high performance extra-heavy steel plate based on reducing rolling torque[J]. China Metallurgy, 2022, 32(1): 83-89. [15] 李忠波, 唐郑磊, 许少普, 等. 水电用SX610CF特厚钢板的研发[J]. 轧钢, 2019, 36(4): 19-24. Li Zhongbo, Tang Zhenglei, Xu Shaopu, et al. Development of SX610CF heavy plate for hydropower[J]. Steel Rolling, 2019, 36(4): 19-24. [16] Hu J, Du L X, Xie H, et al. Microstructure and mechanical properties of TMCP heavy plate microalloyed steel[J]. Materials Science and Engineering A, 2014, 607: 122-131. [17] Cao Z, Bao Y, Xia Z, et al. Toughening mechanisms of a high-strength acicular ferrite steel heavy plate[J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(5): 567-572. [18] Loder D, Michelic S K, Bernhard C. Acicular ferrite formation and its influencing factors: A review[J]. Journal of Materials Science Research, 2017, 6(1): 24-43. [19] 王 楠, 陈永楠, 赵秦阳, 等. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310. Wang Nan, Chen Yongnan, Zhao Qinyang, et al. Effect of strain rate on the strain partitioning behavior of ferrite/bainite in X80 pipeline steel[J]. Acta Metallurgica Sinica, 2023, 59(10): 1299-1310. [20] Goadman T. Precipitation hardening in metals[J]. Materials Science and Technology, 1999, 15(1): 30-36. [21] 蔡建伟. HSLA钢中M-A组织的形成动力学及其对力学性能的影响[D]. 秦皇岛: 燕山大学, 2007. Cai Jianwei. Formation dynamics of M-A constituent inHSLA steel and it's effect on mechanical property[D]. Qinhuangdao: Yanshan University, 2007. [22] 郭昊东, 杨超飞, 孙 磊, 等. 10CrNi8MoV钢的包申格效应及恢复热处理[J]. 金属热处理, 2024, 49(8): 119-123. Guo Haodong, Yang Chaofei, Sun Lei, et al. Bauschinger effect and recovery heat treatment of 10CrNi8MoV steel[J]. Heat Treatment of Metals, 2024, 49(8): 119-123. [23] Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity-I. Theory[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(6): 1239-1263. [24] Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues[J]. Scripta Materialia, 2003, 48(2): 119-125. |