[1] 张 进. 轻量化材料的发展及其在汽车结构中的应用[J]. 造纸装备及材料, 2022, 51(5): 66-68. Zhang Jin. Development of lightweight materials and their application in automotive structures[J]. Pulp and Paper Equipment and Materials, 2022, 51(5): 66-68. [2] 杨 灿, 孙双娣, 张 雯. 汽车材料轻量化研究[J]. 河南农业, 2015, 32(6): 47-48. Yang Can, Sun Shuangdi, Zhang Wen. Research on lightweighting of automotive materials[J]. Henan Agriculture, 2015, 32(6): 47-48. [3] 张家辉, 王 峰. 汽车轻量化技术对整车动力性能提升的影响研究[J]. 内燃机工程, 2024, 45(6): 7-10. [4] 韩 赟, 刘华赛, 肖宝亮. 我国汽车用钢开发应用现状及发展趋势[J]. 轧钢, 2024, 41(5): 108-120. Han Yun, Liu Huasai, Xiao Baoliang. Development, application status, and future trends of automotive steels in China[J]. Steel Rolling, 2024, 41(5): 108-120. [5] 筱 斐. 多元化材料组合为汽车轻量化发展的必然趋势[J]. 汽车与配件, 2016, 50(41): 48-52. Xiao Fei. The diversified material combination: An inevitable trend for the development of automotive light weighting[J]. Automobile and Parts, 2016, 50(41): 48-52. [6] 李亚楠. 多相TRIP钢加工硬化机理研究[D]. 长沙: 湖南大学, 2023. [7] 沈书成. 高锰TRIP/TWIP钢的变形行为研究[D]. 长沙: 湖南大学, 2023. [8] Wang Yu, Zhang Tianyu, Xu Yunbo, et al. Pre-quenching induced lath structures and enhanced TRIP effect to optimize the strength-ductility of ultrahigh-strength hot-galvanized steel[J]. Journal of Materials Research and Technology, 2023, 26: 7958-7971. [9] Sugimoto K I, Sakaguchi J, Iida T, et al. Stretch-flangeability of a high-strength TRIP type bainitic sheet steel[J]. Transactions of the Iron and Steel Institute of Japan, 2007, 40(9): 920-926. [10] Wang Yu, Hou Xingxia, Guo Chengyu, et al. Achieving an excellent balance of strength, plasticity, and stretch flange ability in a 1000 MPa grade TRIP-assisted bainitic ferrite steel[J]. Journal of Materials Research and Technology, 2024, 32: 2357-2369. [11] 胡汉江, 赵爱民, 印珠凯, 等. 预应变对TRIP钢力学性能及硬化行为的影响[J]. 材料热处理学报, 2016, 37(5): 128-132. Hu Hanjiang, Zhao Aimin, Yin Zhukai, et al. Effect of pre-strain on mechanical properties and hardening behavior of TRIP steel[J]. Transactions of Materials and Heat Treatment, 2016, 37(5): 128-132. [12] 何忠平. 应变速率对不同强度级别TRIP钢力学行为影响的研究[D]. 上海: 上海大学, 2012. [13] Xu Ning, Wang Lingyu, Hu Jun, et al. Promoting ductility and formability in a carbide free bainitic steel via pre-annealing treatment[J]. Materials Characterization, 2023, 20(4): 113-205. [14] Xu Ning, Wang Lingyu, Hu Jun, et al. Enhancing the yield strength of intercritically annealed Q&P steel via bainite-based quenching and partitioning treatment[J]. Journal of Materials Research and Technology, 2023, 27(3): 3996-4004. [15] Ravi A M, Sietsma J, Santofimia M J. The role of grain-boundary cementite in bainite formation in high-carbon steels[J]. Scripta Materialia, 2020, 185: 7-11. [16] Tian Yu, Tan Zhunli, Li Huijun, et al. A novel quenching strategy for enhanced mechanical behaviour homogeneity of large-size parts via bainite kinetics acceleration: Experimental and numerical investigation[J]. Journal of Manufacturing Processing, 2024, 124(1): 843-855. [17] 李春诚, 郭晓静, 杨 波, 等. DIL 805热膨胀仪在先进高强钢中的典型应用[C]//中国金属学会第十四届中国钢铁年会论文集. 2023: 6-7. [18] Moor E D, Lacroix S, Clarke A J, et al. Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels[J]. Metallurgical and Materials Transactions A, 2008, 39(11): 2586-2595. [19] Tian Yaqiang, Tian Geng, Zheng Xiaoping, et al. C and Mn elements characterization and stability of retained austenite in different locations of quenching and partitioning bainite steels[J]. Acta Metallurgica Sinica, 2018, 55(3): 332-340. [20] 刘 强, 江海涛, 唐 荻, 等. TRIP钢中残余奥氏体的分布及相变行为[J]. 物理测试, 2008, 26(4): 21-25. Liu Qiang, Jiang Haitao, Tang Di, et al. Distribution and transformation behavior of retained austenite in TRIP steel[J]. Physics Examination and Testing, 2008, 26(4): 21-25. [21] Wu Yuxiang, Sun Wenwen, Mark Styles, et al. Cementite coarsening during the tempering of Fe-C-Mn martensite[J]. Acta Materialia, 2018, 159(8): 209-224. [22] Wu Yuxiang, Sun Wenwen, Gao Xiang, et al. The effect of alloying elements on cementite coarsening during martensite tempering[J]. Acta Materialia, 2020, 183(12): 418-437. |