[1] Zhang S, Xu X, Lin T, et al. Recent advances in nano-materials for packaging of electronic devices[J]. Journal of Materials Science: Materials in Electronics, 2019, 30: 13855-13868. [2] Zhen R, Chao L, Yan C, et al. Preparation and research process of high thermal conductivity metal matrix composites[J]. Powder Metallurgy Technology, 2022, 40: 40-52. [3] Che Z, Zhang Y, Li J, et al. Nucleation and growth mechanisms of interfacial Al4C3 in Al/diamond composites[J]. Journal of Alloys and Compounds, 2016, 657: 81-89. [4] Sun Z, Shi H, Hu X, et al. Simultaneously enhanced mechanical properties and electromagnetic interference shielding performance of graphene nanosheets (GNSs) reinforced magnesium matrix composite by GNSs induced laminated structure[J]. Journal of Alloys and Compounds, 2022, 898: 162847. [5] Wang W G, Zhang J F, Zan Y N, et al. Failure mechanism of nano-structural interfacial layer in Mg matrix composites reinforced with Cf[J]. Composites Part A: Applied Science and Manufacturing, 2022, 154: 106780. [6] Say Y, Guler O, Dikici B. Carbon nanotube (CNT) reinforced magnesium matrix composites: The effect of CNT ratio on their mechanical properties and corrosion resistance[J]. Materials Science and Engineering A, 2020, 798: 139636. [7] Razeeb K M, Dalton E, Cross G L W, et al. Present and future thermal interface materials for electronic devices[J]. International Materials Reviews, 2018, 63: 1-21. [8] Wan Y J, Li G, Yao Y M, et al. Recent advances in polymer-based electronic packaging materials[J]. Composites Communications, 2020, 19: 154-167. [9] Ciupiński L, Kruszewski M J, Grzonlia J, et al. Design of interfacial Cr3C2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications[J]. Materials and Design, 2017, 120: 170-185. [10] Che Z, Li J, Wang Q, et al. The formation of atomic-level interfacial layer and its effect on thermal conductivity of W coated diamond particles reinforced Al matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 164-170. [11] Pan Y, He X, Ren S, et al. Optimized thermal conductivity of diamond/Cu composite prepared with tungsten-copper-coated diamond particles by vacuum sintering technique[J]. Vacuum, 2018, 153: 74-81. [12] Sun Y, He L, Zhang C, et al. Enhanced tensile strength and thermal conductivity in copper diamond composites with B4C coating[J]. Scientific Reports, 2017, 7: 10727. [13] Ma S, Zhao N, Shi C, et al. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites[J]. Applied Surface Science, 2017, 402: 372-383. [14] Li H, Wang C, Wu L, et al. Optimization of process parameters, microstructure, and thermal conductivity properties of Ti-coated diamond/copper composites prepared by spark plasma sintering[J]. Journal of Materials Science: Materials in Electronics, 2021, 32: 9115-9125. [15] Yang W, Chen G, Wang P, et al. Enhanced thermal conductivity in diamond/aluminum composites with tungsten coatings on diamond particles prepared by magnetron sputtering method[J]. Journal of Alloys and Compounds, 2017, 726: 623-631. [16] Wang L, Li J, Catalano M, et al. Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer[J]. Composites Part A: Applied Science and Manufacturing, 2018, 113: 76-82. [17] Tavangar R, Molina J M, Weber L. Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast[J]. Scripta Materialia, 2007, 56: 357-360. [18] Sang J, Yuan Y, Yang W, et al. Exploring the underlying causes of optimizing thermal conductivity of copper/diamond composites by interface thickness[J]. Journal of Alloys and Compounds, 2022, 891: 161777. [19] 马国斌, 谭建波. 颗粒增强金属基复合材料的研究现状[J]. 铸造设备与工艺, 2019(2): 50-54. Ma Guobin, Tan Jianbo. Research status of particle reinforced metal matrix composites[J]. Foundry Equipment & Technology, 2019(2): 50-54. [20] 吕反修. CVD金刚石膜新兴研究方向及市场现状与趋势[J]. 金属热处理, 2008, 33(11): 1-5. Lü Fanxiu. New research directions in CVD diamond films and the present status and future trends in commercialization[J]. Heat Treatment of Metals, 2008, 33(11): 1-5. [21] Tang Y, Wang L, Zhao C. Enhancement of the thermal properties of silver-diamond composites with chromium carbide coating[J]. Applied Physics A, 2014, 115(2): 379-385. [22] Lee M T, Chung C Y, Lin C M, et al. Effects of Ti addition on thermal properties of diamond/Ag-Ti composites fabricated by liquid sintering[J]. Materials Letters, 2014, 116: 212-214. [23] 李成力. 银基金刚石复合材料的制备工艺和性能研究[D]. 无锡: 江南大学, 2022. Li Chengli. Study on preparation technology and properties of diamond/Ag composites[D]. Wuxi: Jiangnan University, 2022. [24] Weidenmann K A, Tavangar R, Weber L, et al. Rigidity of diamond-reinforced metals featuring high particle contents[J]. Composite Science Technology, 2009, 69(10): 1660-1666. [25] Weber L, Tavangar R. Diamond-based metal matrix composites for thermal management made by liquid metal infiltration potential and limits[J]. Advanced Materials Research, 2009, 59: 111-115. [26] Wang L, Li J, Che Z, et al. Combining Cr pre-coating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites[J]. Journal of Alloys and Compounds, 2018, 749: 1098-1105. [27] Dai S, Li J, Lu N. Research progress of diamond/copper composites with high thermal conductivity[J]. Diamond and Related Materials, 2020, 108: 107993. [28] Nam T, Requena G, Degischer P. Thermal expansion behaviour of aluminum matrix composites with densely packed SiC particles[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39: 856-865. |