[1]Najafizadeh M, Yazdi S, Bozorg M, et al. Classification and applications of titanium and its alloys: A review[J]. Journal of Alloys and Compounds Communications, 2024, 3: 100019. [2]苗 芳, 吴慧云, 鲁 泽, 等. 高压热处理对TC11钛合金组织及力学性能的影响[J]. 精密成形工程, 2023, 15(9): 1-7. Miao Fang, Wu Huiyun, Lu Ze, et al. Effect of high-pressure heat treatment on microstructure and mechanical properties of TC11 titanium alloy[J]. Journal of Netshape Forming Engineering, 2023, 15(9): 1-7. [3]Liu C C, Li Y H Z, Gu J, et al. Phase transformation in titanium alloys: A review[J]. Transactions of Nonferrous Metals Society of China, 2024, 34(10): 3093-3117. [4]Chai Z, Wang W Y, Ren Y, et al. Hot deformation behavior and microstructure evolution of TC11 dual-phase titanium alloy[J]. Materials Science and Engineering A, 2024, 898: 146331. [5]Chen W, Huang S, Wang K, et al. Effects of solution treatment on microstructure and properties of Ti-5.7Al-3.9Sn-0.91Mo-3.4Zr-0.40Si-0.38Nb-0.95Ta titanium alloy[J]. Materials Science and Engineering A, 2024, 918: 147439. [6]Shao Z, Pang J C, Zhang Z J, et al. Tensile deformation behaviors of Ti-6.5Al-3.5Mo-1.5Zr-0.25Si alloy with different percentages of primary α phase[J]. Materials Science and Engineering A, 2022, 842: 143097. [7]Hao Y, Huang Y, Zhao K, et al. Research on the microstructure and mechanical properties of doubled annealed laser melting deposition TC11 titanium alloy[J]. Optics and Laser Technology, 2022, 150: 107983. [8]周建伟, 孙前江, 彭嘉豪, 等. 三重热处理对TC21钛合金网篮组织及拉伸性能的影响[J]. 稀有金属材料与工程, 2022, 51(9): 3353-3359. Zhou Jianwei, Sun Qianjiang, Peng Jiahao, et al. Effect of triple heat treatment on basket-weave structure and tensile properties of TC21 titanium alloy[J]. Rare Metal Materials and Engineering, 2022, 51(9): 3353-3359. [9]王凯旋, 曾卫东, 赵永庆, 等. 钛合金显微组织与性能定量关系的模型[J]. 稀有金属材料与工程, 2011, 40(5): 784-787. Wang Kaixuan, Zeng Weidong, Zhao Yongqing, et al. Modelling the quantitative correlation between the microstructure and mechanical properties in titanium alloys[J]. Rare Metal Materials and Engineering, 2011, 40(5): 784-787. [10]沙爱学, 李兴无, 王庆如. 高强度TC18钛合金β锻造工艺参数与组织和性能的定量关系[J]. 机械工程材料, 2012, 36(12): 49-52. Sha Aixue, Li Xingwu, Wang Qingru. The relationship among forging parameters, microstructure and properties of high strength TC18 titanium alloy forging in β zone[J]. Materials for Mechanical Engineering, 2012, 36(12): 49-52. [11]曹玉如, 冯 璐, 冯晓花, 等. TC11钛合金锻造工艺与热处理工艺研究[J]. 锻造与冲压, 2023(1): 61-64. Cao Yuru, Feng Lu, Feng Xiaohua, et al. Study on forging and heat treatment of TC11 titanium alloy[J]. Forging & Metalforming, 2023(1): 61-64. [12]王博涵, 程 礼, 崔文斌, 等. 锻造工艺对TC4钛合金组织和力学性能的影响[J]. 热加工工艺, 2021, 50(23): 17-21. Wang Bohan, Cheng Li, Cui Wenbin, et al. Effect of forging process on microstructure and mechanical properties of TC4 titanium alloy[J]. Hot Working Technology, 2021, 50(23): 17-21. [13]彭文雅, 吴学深, 赵春玲, 等. 中温高强TC11和TC19钛合金锻件组织与性能研究[J]. 钛工业进展, 2023, 40(6): 10-15. Peng Wenya, Wu Xueshen, Zhao Chunling, et al. Research on microstructure and performance of medium temperature and high strength TC11 and TC19 titanium alloy forgings[J]. Titanium Industry Progress, 2023, 40(6): 10-15. [14]Jiang H, Jiang F, Xie B, et al. Effects of the cooling rate on mechanical properties and microstructure of near-α Ti-6Al-3Zr-2Nb-Mo alloy[J]. Materials Characterization, 2023, 195: 112529. [15]左承坤, 任 勇, 王 涛, 等. 准β锻造和β热处理对TC11组织和断裂韧性的影响[J]. 热处理技术与装备, 2024, 45(1): 24-28. Zuo Chengkun, Ren Yong, Wang Tao, et al. Effects of quasi-beta forging and β heat treatment on microstructure and fracture toughness of TC11 titanium alloy[J]. Heat Treatment Technology and Equipment, 2024, 45(1): 24-28. [16]Zhang F, Huang K, Zhao K, et al. Directed energy deposition combining high-throughput technology and machine learning to investigate the composition-microstructure-mechanical property relationships in titanium alloys[J]. Journal of Materials Processing Technology, 2023, 311: 117800. [17]愈汉清, 陈金德. 金属塑性成形原理[M]. 北京: 机械工业出版社, 2021. [18]乔恩利, 张明玉, 顾忠明. 固溶温度对Ti662钛合金组织与高温拉伸性能的影响[J]. 金属热处理, 2025, 50(10): 174-178. Qiao Enli, Zhang Mingyu, Gu Zhongming. Effect of solution temperature on microstructure and high-temperature tensile properties of Ti662 titanium alloy[J]. Heat Treatment of Metals, 2025, 50(10): 174-178. [19]Li C C, Xin C, Wang Q, et al. A novel low-cost high-strength β titanium alloy: Microstructure evolution and mechanical behavior[J]. Journal of Alloys and Compounds, 2023, 959: 170497. [20]Yu R H, Chen Q, Wang P C, et al. Effects of solution temperature and aging time on the microstructure and mechanical properties of TG6 titanium alloy[J]. Journal of Materials Engineering and Performance, 2022, 31(2): 1456-1464. |