[1] 单运启, 张彦敏, 张朝民, 等. 形变热处理对Cu-Ni-Si合金组织性能的影响[J]. 材料热处理学报, 2024, 45(1): 95-102. Shan Yunqi, Zhang Yanmin, Zhang Chaomin, et al. Effect of thermomechanical treatment on the microstructure and properties of Cu-Ni-Si alloy[J]. Transactions of Materials and Heat Treatment, 2024, 45(1): 95-102. [2] Wu Z, Hu J, Xin Z, et al. Microstructure and properties of Cu-Zn-Cr-Zr alloy treated by multistage thermo-mechanical treatment[J]. Materials Science and Engineering A, 2023, 870: 144679. [3] 靖青秀, 彭 勇, 肖翔鹏, 等. Fe含量对Cu-Ti-Ni-xFe合金组织与性能的影响[J]. 金属热处理, 2024, 49(1): 96-102. Jing Qingxiu, Peng Yong, Xiao Xiangpeng, et al. Effect of Fe content on microstructure and properties of Cu-Ti-Ni-xFe alloys[J]. Heat Treatment of Metals, 2024, 49(1): 96-102. [4] Cao T, Wang S, Zhao G, et al. Evolution of microstructure and residual stress for a lead-frame Cu-2.13 Fe-0.026 P(wt%) alloy[J]. Journal of Alloys and Compounds, 2023, 965: 171383. [5] 马启东, 张宇博, 岳世鹏, 等. 深冷轧制及时效处理过程中Cu-Fe合金的组织性能演变[J]. 金属热处理, 2024, 49(4): 48-54. Ma Qidong, Zhang Yubo, Yue Shipeng, et al. Microstructure and properties evolution of Cu-Fe alloy after cryogenic rolling and aging treatment[J]. Heat Treatment of Metals, 2024, 49(4): 48-54. [6] 李小军, 项燕龙, 向朝建, 等. 铜铁合金的制备方法及相结构调控研究进展[J]. 材料热处理学报, 2024, 45(8): 1-12. Li Xiaojun, Xiang Yanlong, Xiang Chaojian, et al. Research progress of preparation methods and phase structure control of Cu-Fe alloys[J]. Transactions of Materials and Heat Treatment, 2024, 45(8): 1-12. [7] Zhang J, Hao W, Lin J, et al. Effects of carbon element on the formed microstructure in undercooled Cu-Fe-C alloys[J]. Journal of Alloys and Compounds, 2020, 827: 154285. [8] 王梦娜, 方冬松. 退火温度对Cu-Fe-P合金显微组织及性能的影响[J]. 有色金属加工, 2024, 53(4): 30-33, 50. Wang Mengna, Fang Dongsong. Effect of annealing temperature on microstructure and properties of Cu-Fe-P alloy[J]. Nonferrous Metals Processing, 2024, 53(4): 30-33, 50. [9] Liu S, Jie J, Guo Z, et al. A comprehensive investigation on microstructure and magnetic properties of immiscible Cu-Fe alloys with variation of Fe content[J]. Materials Chemistry and Physics, 2019, 238: 121909. [10] Liu S, Jie J, Dong B, et al. Novel insight into evolution mechanism of second liquid-liquid phase separation in metastable immiscible Cu-Fe alloy[J]. Materials & Design, 2018, 156: 71-81. [11] He J, Zhao J Z, Ratke L. Solidification microstructure and dynamics of metastable phase transformation in undercooled liquid Cu-Fe alloys[J]. Acta Materialia, 2006, 54(7): 1749-1757. [12] Chao S C, Huang W C, Liu J H, et al. Oxidation characteristics of commercial copper-based lead frame surface and the bonding with epoxy molding compounds[J]. Microelectronics Reliability, 2019, 99: 161-167. [13] 王能能, 田保红, 周 孟, 等. Cu-2Ti-0.3Zr合金的热变形行为及组织演变[J]. 材料热处理学报, 2024, 45(6): 147-154. Wang Nengneng, Tian Baohong, Zhou Meng, et al. Hot deformation behavior and microstructure evolution of Cu-2Ti-0.3Zr alloy[J]. Transactions of Materials and Heat Treatment, 2024, 45(6): 147-154. [14] 张志阳, 周 孟, 张 毅, 等. Cu-Ti-Ni-Mg合金的热变形行为及热加工图[J]. 材料热处理学报, 2023, 44(7): 149-156. Zhang Zhiyang, Zhou Meng, Zhang Yi, et al. Hot deformation behavior and hot processing map of Cu-Ti-Ni-Mg alloy[J]. Transactions of Materials and Heat Treatment, 2023, 44(7): 149-156. [15] Xin G, Zhou M, Jing K, Hu H, et al. Hot deformation behavior and microstructure evolution of the Cu-1.5Ti-(0.5Fe) alloys[J]. Journal of Materials Research and Technology, 2024, 30: 4961-4972. [16] Liu K, Jiang Z, Zhou H, et al. Effect of heat treatment on the microstructure and properties of deformation-processed Cu-7Cr in situ composites[J]. Journal of Materials Engineering and Performance, 2015, 24: 4340-4345. [17] Wang B, Zhang Y, Tian B, et al. Effects of Ce and Y addition on microstructure evolution and precipitation of Cu-Mg alloy hot deformation[J]. Journal of Alloys and Compounds, 2019, 781: 118-130. [18] Ban Y, Zhang Y, Jia Y, et al. Effects of Cr addition on the constitutive equation and precipitated phases of copper alloy during hot deformation[J]. Materials & Design, 2020, 191: 108613. [19] Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1996, 14(9): 1136-1138. [20] 娄号南, 刘家奥, 梅飞强, 等. GH2150合金的热变形行为及动态再结晶规律[J]. 金属热处理, 2023, 48(6): 167-172. Lou Haonan, Liu Jiaao, Mei Feiqiang, et al. Hot deformation behavior and dynamic recrystallization law of GH2150 alloy[J]. Heat Treatment of Metals, 2023, 48(6): 167-172. [21] 丁佐军, 任文浩, 张 果, 等. Inconel617合金的热变形行为[J]. 金属热处理, 2025, 50(2): 8-14. Ding Zuojun, Ren Wenhao, Zhang Guo, et al. Hot deformation behavior of Inconel617 alloy[J]. Heat Treatment of Metals, 2025, 50(2): 8-14. [22] Edalati K, Horita Z. Correlations between hardness and atomic bond parameters of pure metals and semi-metals after processing by high-pressure torsion[J]. Scripta Materialia, 2011, 64(2): 161-164. [23] Huang S H, Chai S X, Xia X S, et al. Compression deformation behavior and processing map of pure copper[J]. Strength of Materials, 2016, 48(1): 98-106. [24] Prasad Y, Seshacharyulu T. Processing maps for hot working of titanium alloys[J]. Materials Science and Engineering A, 1998, 243(1/2): 82-88. [25] Zhang P, Hu C, Ding C, et al. Plastic deformation behavior and processing maps of a Ni-based superalloy[J]. Materials & Design(1980-2015), 2015, 65: 575-584. [26] Subramani M, Tzeng Y C, Tseng L W, et al. Hot deformation behavior and processing map of AZ61/SiC composites[J]. Materials Today Communications, 2021, 29: 102861. [27] Ozerov M, Klimova M, Kolesnikov A, et al. Deformation behavior and microstructure evolution of a Ti/TiB metal-matrix composite during high-temperature compression tests[J]. Materials & Design, 2016, 112: 17-26. [28] Liu K, Jiang Z, Zhao J, et al. Effect of directional solidification rate on the microstructure and properties of deformation-processed Cu-7Cr-0.1Ag in situ composites[J]. Journal of Alloys and Compounds, 2014, 612: 221-226. [29] Kabir A S H, Sanjari M, Su J, et al. Effect of strain-induced precipitation on dynamic recrystallization in Mg-Al-Sn alloys[J]. Materials Science and Engineering A, 2014, 616: 252-259. |