[1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.  [2] Cantor B, Chang I T H, Knight P. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering A, 2004, 375: 213-218.  [3] Wang J, Kuang S, Yu X, et al. Tribo-mechanical properties of CrNbTiMoZr high-entropy alloy film synthesized by direct current magnetron sputtering[J]. Surface and Coatings Technology, 2020, 403: 126374.  [4] Xiao L, Zheng Z, Huang P, et al. Superior anticorrosion performance of crystal-amorphous FeMnCoCrNi high-entropy alloy[J]. Scripta Materialia, 2022, 210: 114454.  [5] Jiang D, Cui H, Zhao X, et al. Synchronous improvement of wear and corrosion resistance of CoCrNiMoCB coatings obtained by laser cladding: Role of Mo concentration[J]. SSRN Electronic Journal, 2022, 219: 110751.  [6] Rao Ziyuan, Wang Xun, Wang Qinjia, et al. Microstructure, mechanical properties, and oxidation behavior of AlxCr0.4CuFe0.4MnNi high entropy alloys[J]. Advanced Engineering Materials, 2017, 19(5): 1600726.  [7] Li J, Huang Y, Meng X, et al. A review on high entropy alloys coatings: Fabrication processes and property assessment[J]. Advanced Engineering Materials, 2019, 21(8): 1900343.  [8] Duchaniya R K, Pandel U, Rao P. Coatings based on high entropy alloys: An overview[J]. Materials Today: Proceedings, 2021, 44: 4467-4473.  [9] Meghwal A, Anupam A, Murty B S, et al. Thermal spray high-entropy alloy coatings: A review[J]. Journal of Thermal Spray Technology, 2020, 29: 857-893.  [10] 张泽疆, 李新梅. 激光熔覆CoCrFeNiSix高熵合金涂层的耐磨和耐蚀性能[J]. 材料研究学报, 2024, 38(10): 741-750.  Zhang Zejiang, Li Xinmei. Wear and corrosion resistance of laser cladding CoCrFeNiSix high entropy alloy coating[J]. Chinese Journal of Materials Research, 2024, 38(10): 741-750.  [11] 杨成康, 程晓农, 张 洁, 等. W-Mo-V改进型H13模具钢的力学性能与磨损行为[J]. 金属热处理, 2021, 46(4): 30-36.  Yang Chengkang, Cheng Xiaonong, Zhang Jie, et al. Mechanical properties and wear behavior of W-Mo-V modified H13 tool steel[J]. Heat Treatment of Metals, 2021, 46(4): 30-36.  [12] Zhu J, Zhang Z, Xie J. Improving strength and ductility of H13 die steel by pre-tempering treatment and its mechanism[J]. Materials Science and Engineering A, 2019, 752(3): 101-114.  [13] 姜高强, 崔承云, 魏礼桢, 等. 激光熔覆Fe基合金涂层强化H13热作模具钢[J]. 材料科学与工艺, 2022, 30(2): 35-42.  Jiang Gaoqiang, Cui Chengyun, Wei Lizhen, et al. Laser cladding Fe-based alloy coating for strengthening H13 hot work die steel[J]. Materials Science and Technology, 2022, 30(2): 35-42.  [14] Chen C R, Wang Y, Ou H G, et al. A review on remanufacture of dies and moulds[J]. Journal of Cleaner Production, 2014, 64: 13-23.  [15] Hawryluk M. Review of selected methods of increasing the life of forging tools in hot die forging processes[J]. Archives of Civil and Mechanical Engineering, 2016, 16: 845-866.  [16] 杜学芸, 许金宝, 宋 健. 激光熔覆再制造技术研究现状及发展趋势[J]. 表面工程与再制造, 2020, 20(6): 18-22.  Du Xueyun, Xu Jinbao, Song Jian. Research status and development trend of laser cladding remanufacturing technology[J]. Surface Engineering and Remanufacturing, 2020, 20(6): 18-22.  [17] 卫广智, 温书涛, 李宝增, 等. 航空发动机制件热锻模激光熔覆修复层组织性能研究[J]. 热加工工艺, 2008, 37(17): 29-31, 34.  Wei Guangzhi, Wen Shutao, Li baozeng, et al. Study on microstructure and properties of repaired laser cladding on high-temperature forging mould for aeroengine pieces[J]. Hot Working Technology, 2008, 37(17): 29-31, 34.  [18] Lu Y, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Scientific Reports, 2014, 4(1): 6200.  [19] Arif Z U, Khalid M Y, Ur Rehman E, et al. A review on laser cladding of high-entropy alloys, their recent trends and potential applications[J]. Journal of Manufacturing Processes, 2021, 68: 225-273.  [20] 吴 韬, 吴濛婷, 陈云祥, 等. H13钢表面激光熔覆AlCoCrFeNiWx高熵合金涂层及其性能[J]. 金属热处理, 2021, 46(11): 241-244.  Wu Tao, Wu Mengting, Chen Yunxiang, et al. Properties of laser clad AlCoCrFeNiWx high entropy alloy coatings on H13 steel[J]. Heat Treatment of Metals, 2021, 46(11): 241-244.  [21] Wall M T, Pantawane M V, Joshi S, et al. Laser-coated CoFeNiCrAlTi high entropy alloy onto a H13 steel die head[J]. Surface and Coatings Technology, 2020, 387: 125473.  [22] Shi F K, Zhang Q K, Xu C, et al. In-situ synthesis of NiCoCrMnFe high entropy alloy coating by laser cladding[J]. Optics and Laser Technology, 2022, 151: 108020.  [23] Li Z, Jing C, Feng Y, et al. Phase evolution and properties of AlxCoCrFeNi high-entropy alloys coatings by laser cladding[J]. Materials Today: Communications, 2023, 35: 105800.  [24] Shu F, Wang B, Zhao H, et al. Effects of line energy on microstructure and mechanical properties of CoCrFeNiBSi high-entropy alloy laser cladding coatings[J]. Journal of Thermal Spray Technology, 2020, 29: 789-797.  [25] Liu X T, Lei W B, Li J, et al. Laser cladding of high-entropy alloy on H13 steel[J]. Rare Metals, 2014, 33: 727-730.  [26] Yang C, Jing C, Fu T, et al. Effect of CeO2 on the microstructure and properties of AlCoCrFeNi2.1 laser cladding coatings[J]. Journal of Alloys and Compounds, 2024, 976: 172948.  [27] Dong Z, Feng L, Long H, et al. A multi-objective optimization of laser cladding processing parameters of AlCoCrFeNi2.1 eutectic high-entropy alloy coating[J]. Optics and Laser Technology, 2024, 170: 110302.  [28] Zhang L, Ji Y, Yang B. Thermal stability and hot corrosion performance of the AlCoCrFeNi2.1 high-entropy alloy coating by laser cladding[J]. Materials, 2023, 16(17): 5747.  [29] 熊 婷, 郑士建, 马秀良. 高熵合金AlCoCrFeNi2.1的共晶组织及析出相研究[J]. 电子显微学报, 2020, 39(5): 470-475.  Xiong Ting, Zheng Shijian, Ma Xiuliang. An investigation on the eutectic structure and precipitates in the high-entropy alloy AlCoCrFeNi2.1[J]. Journal of Chinese Electron Microscopy Society, 2020, 39(5): 470-475.  [30] Yang W, Zhang K, Zeng D, et al. Microstructure evolution and wear behavior of Stellite12 coating prepared by laser-directed energy deposition on H13 steel[J]. Materials Today: Communications, 2024, 41: 110960.  [31] Li Y, Zhou J, Liu Y, et al. Microstructural evolution and mechanical characterization for the AlCoCrFeNi2.1 eutectic high entropy alloy under different temperatures[J]. Fatigue and Fracture of Engineering Materials and Structures, 2023, 46(5): 1881-1892.  [32] Wang X, Zhang Q, Pan X, et al. On the microstructural evolution and mechanical property development of additively manufactured AlCoCrFeNi2.1 eutectic high-entropy alloy with aging temperature[J]. Materials Science and Engineering A, 2024, 913: 147060.  [33] Shen Q, Kong X, Chen X. Significant transitions of microstructure and mechanical properties in additively manufactured Al-Co-Cr-Fe-Ni high-entropy alloy under heat treatment[J]. Materials Science and Engineering A, 2021, 815: 141257.  [34] An J, Zhou Y, Yan M, et al. Effect of heat treatment on microstructure and mechanical properties of direct energy deposited AlCoCrFeNi2.1[J]. Journal of Thermal Spray Technology, 2022, 31(5): 1634-1648.  [35] Lan L, Zhang H, Yang Z, et al. Significant transitions of microstructure and mechanical properties in laser additive manufacturing AlCoCrFeNi2.1 eutectic high-entropy alloy under heat treatment[J]. Journal of Materials Research and Technology, 2023, 25: 6250-6262.  [36] Cheng Q, Zhang Y, Xu X D, et al. Mechanistic origin of abnormal annealing-induced hardening in an AlCoCrFeNi2.1 eutectic multi-principal-element alloy[J]. Acta Materialia, 2023, 252: 118905.  [37] Miao J, Yao H, Wang J, et al. Surface modification for AlCoCrFeNi2.1 eutectic high-entropy alloy via laser remelting technology and subsequent aging heat treatment[J]. Journal of Alloys and Compounds, 2022, 894: 162380. |