[1] 曹陆军, 周玉成, 孙世豪, 等. 超低温压力容器用钢研究现状[J]. 特殊钢, 2025, 46(2): 13-22.  Cao Lujun, Zhou Yucheng, Sun Shihao, et al. Research status of ultra-low temperature pressure vessel steel[J]. Special Steel, 2025, 46(2): 13-22.  [2] 何应玲, 何宜柱, 杨 磊. 热处理工艺对9Ni钢组织和低温韧性的影响[J]. 金属热处理, 2017, 42(2): 119-123.  He Yingling, He Yizhu, Yang Lei. Effect of heat treatment process on microstructure and cryogenic toughness of 9Ni steel[J]. Heat Treatment of Metals, 2017, 42(2): 119-123.  [3] 侯家平, 潘 涛, 朱莹光, 等. 临界淬火工艺对9Ni低温钢力学性能及精细组织的影响[J]. 材料热处理学报, 2014, 35(10): 88-93.  Hou Jiaping, Pan Tao, Zhu Yingguang, et al. Effect of inter-critical quenching process on mechanical property and microstructure of 9Ni cryogenic steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(10): 88-93.  [4] 李 铖, 彭其春, 童志博, 等. 不同热处理工艺对9Ni低温容器用钢组织与性能的影响[J]. 金属热处理, 2024, 49(2): 98-103.  Li Cheng, Peng Qichun, Tong Zhibo, et al. Effects of different heat treatment processes on microstructure and properties of 9Ni cryogenic vessel steel[J]. Heat Treatment of Metals, 2024, 49(2): 98-103.  [5] 刘文月, 李天怡, 安 涛, 等. QLT热处理对油套管用钢显微组织与力学性能的影响[J]. 金属热处理, 2025, 50(1): 103-109.  Liu Wenyue, Li Tianyi, An Tao, et al. Effect of QLT heat treatment on microstructure and mechanical properties of oil casing steel[J]. Heat Treatment of Metals, 2025, 50(1): 103-109.  [6] 夏 渊. 60Si2CrVAT钢循环热处理的组织与力学性能研究[D]. 重庆: 重庆大学, 2021.  Xia Yuan. Effect of cyclic heat treatment on microstructure and mechanical properties of 60Si2CrVAT steel[D]. Chongqing: Chongqing University, 2021.  [7] 李虹燕, 谷臣清, 陈文革. 超高强度钢的热模拟预应变淬火与马氏体形核机制[J]. 热加工工艺, 2005, 34(6): 11-12, 28.  Li Hongyan, Gu Chenqing, Chen Wenge. Thermal simulation and pre-strained quenching and martensite nucleation mechanism of super-high strength steel[J]. Hot Working Technology, 2005, 34(6): 11-12, 28.  [8] 张 梅, 孙国胜, 秦岽烊, 等. 冷轧304不锈钢的马氏体逆相变及奥氏体再结晶行为[J]. 金属热处理, 2021, 46(7): 51-55.  Zhang Mei, Sun Guosheng, Qin Dongyang, et al. Behavior of martensite reverse transformation and austenite recrystallization of cold-rolled 304 stainless steel[J]. Heat Treatment of Metals, 2021, 46(7): 51-55.  [9] 杨跃辉. 9Ni钢淬火组织的粗化规律[J]. 金属热处理, 2015, 40(7): 103-106.  Yang Yuehui. Coarsening law of quenched microstructure in 9Ni steel[J]. Heat Treatment of Metals, 2015, 40(7): 103-106.  [10] 潘力澄, 甘翔宇, 李陶贤闻, 等. 马氏体板条细化机制及其对马氏体钢力学性能的影响[J]. 热处理技术与装备, 2024, 45(4): 43-48.  Pan Licheng, Gan Xiangyu, Li Taoxianwen, et al. Refining mechanism of martensitic lath and influence on mechanical properties of martensitic steel[J]. Heat Treatment Technology and Equipment, 2024, 45(4): 43-48.  [11] 袁星星. 循环淬火对风电轴承42CrMo钢组织和性能的影响[D]. 秦皇岛: 燕山大学, 2021.  Yuan Xingxing. Effect of cyclic quenching on microstructure and properties of 42CrMo steel for wind turbine bearing[D]. Qinhuangdao: Yanshan University, 2021.  [12] 崔忠圻, 覃耀春. 金属学与热处理[M]. 3版. 北京: 机械工业出版社, 2020.  Cui Zhongqi, Qin Yaochun. Metallography and Heat Treatment. [M]. 3rd ed. Beijing: China Machine Press, 2020.  [13] Trujillo M P, Orozco A, Casas-Ruiz M, et al. Crystallization kinetics study of Fe-B-Si metallic glasses in the theoretical frame of the JMA model[J]. Materials Letters, 1995, 24(5): 287-290.  [14] Li Y, Wang Z, Gao X, et al. Revisiting transient coarsening kinetics: A new framework in the Lifshitz-Slyozov-Wagner space[J]. Acta Materialia, 2022, 237: 118196.  [15] 刘 乔. 65Mn低合金钢循环相变处理晶粒超细化机理及性能评价[D]. 重庆: 重庆大学, 2020.  Liu Qiao. Ultrafine grain refining mechanism and performance evaluation of 65Mn low alloy steel in cyclic phase transformation[D]. Chongqing: Chongqing University, 2020. |