[1] Caballero F, Santofimia M, Garcia-Mateo C, et al. Theoretical design and advanced microstructure in super high strength steels[J]. Materials and Design, 2009, 30(6): 2077-2083.  
[2] Li L, Wollants P, He Y L, et al. Review and prospect of high strength low alloy TRIP steel[J]. Acta Metallurgica Sinica, 2003, 16(6): 457-465.  
[3] Gui D L, Long F C, Bao H W, et al. Spinning process of D406A ultra-high strength steel[J]. Materials Science Forum, 2021, 6114: 410-417.  
[4] Tibor K, Jana B, Róbert B. Overview of HSS steel grades development and study of reheating condition effects on austenite grain size changes[J]. Materials, 2021, 14(8): 1988.  
[5] Shi M, Kannan R, Zhang J, et al. Effect of Zr microalloying on austenite grain size of low-carbon steels[J]. Metallurgical and Materials Transactions, 2019, 50: 2574-2585.  
[6] Zhao X, Chen L. Effect of heating temperature on austenite grain size of X80 steel slab[J]. IOP Conference Series: Materials Science and Engineering, 2019, 631(2): 022013.  
[7] Mahshad J, Morteza S, Henri C, et al. Grain size and temperature evolutions during linear friction welding of Ni-base superalloy Waspaloy: Simulations and experimental validations[J]. Journal of Advanced Joining Processes, 2023, 8: 100150.  
[8] Anže B, Jaka B. Influence of austenitisation time and temperature on grain size and martensite start of 51CrV4 spring steel[J]. Crystals, 2022, 12(10): 1449.  
[9] Kukareko V A. Rules of austenitic grain growth in 18KhNVA steel[J]. Metal Science and Heat Treatment, 1981, 23(9): 613-616.  
[10] Zhang H, Long M, Tang P, et al. Study on austenite grain growth law of ultra-high strength hot-stamped 22MnB5 steel during thin slab casting and rolling process[J]. Steel Research International, 2023, 94(8): 2300103.  
[11] Peng Z H, Hua W S, Bao G L, et al. Austenite grain growth law of high-strength steel for offshore engineering[J]. Materials Science Forum, 2022, 6297: 57-62.  
[12] Khalaj G, Yoozbashizadeh H, Khodabandeh A, et al. Austenite grain growth modelling in weld heat affected zone of Nb/Ti microalloyed linepipe steel[J]. Materials Science and Technology, 2014, 30(4): 424-433.  
[13] Białobrzeska B, Dudziński W. Analysis of the austenite grain growth in low-alloy boron steel with high resistance to abrasive wear[J]. Archives of Metallurgy and Materials, 2015, 60(3): 1649-1656.  
[14] Gao Y, Xue X, Yang H. Influence of boron on initial austenite grain size and hot deformation behavior of boron microalloyed steels[J]. Crystals, 2015, 5(4): 592-607.  
[15] 张连有, 赵 卓, 车 安, 等. T90高碳帘线钢加热过程奥氏体晶粒长大规律与数学模型[J]. 金属热处理, 2023, 48(8): 118-123.  
Zhang Lianyou, Zhao Zhuo, Che An, et al. Growing rule and mathematical model of austenite grain in T90 high carbon cord steel[J]. Heat Treatment of Metals, 2023, 48(8): 118-123.  
[16] 彭 则, 李萌蘖, 卜恒勇, 等. 42CrMo钢加热过程中的奥氏体晶粒尺寸演变[J]. 金属热处理, 2021, 46(5): 25-31.  
Peng Ze, Li Mengnie, Bu Hengyong, et al. Evolution of austenite grain size of 42CrMo steel during heating[J]. Heat Treatment of Metals, 2021, 46(5): 25-31.  
[17] 杨 清, 张立文, 张 驰, 等. 低碳Nb-V-Ti微合金钢X70的奥氏体晶粒长大行为[J]. 金属热处理, 2019, 44(4): 1-5.  
Yang Qing, Zhang Liwen, Zhang Chi, et al. Austenite grain growth behavior of low carbon Nb-V-Ti microalloyed steel X70[J]. Heat Treatment of Metals, 2019, 44(4): 1-5.  
[18] 高彩茹, 霍喜伟, 宋玉卿, 等. 500 MPa级门架型钢的奥氏体晶粒长大行为[J]. 金属热处理, 2020, 45(1): 139-142.  
Gao Cairu, Huo Xiwei, Song Yuqing, et al. Austenite grain growth behavior of 500 MPa grade gantry steel[J]. Heat Treatment of Metals, 2020, 45(1): 139-142.  
[19] 刘文月, 任 毅, 王 爽, 等. 钢中奥氏体晶粒长大规律[J]. 上海金属, 2019, 41(4): 88-93.  
Liu Wenyue, Ren Yi, Wang Shuang, et al. Austenite grain growth behavior in steels[J]. Shanghai Metals, 2019, 41(4): 88-93.  
[20] 张 阳, 王福明, 唐郑磊, 等. SXQ500/550D钢奥氏体晶粒长大行为及其影响因素[J]. 金属热处理, 2019, 44(8): 110-118.  
Zhang Yang, Wang Fuming, Tang Zhenglei, et al. Austenite grain growth behavior and its influencing factors of SXQ500/550D steel[J]. Heat Treatment of Metals, 2019, 44(8): 110-118.  
[21] Runze C, Wei W, Shibo M, et al. Arrhenius constitutive model and dynamic recrystallization behavior of 18CrNiMo7-6 steel[J]. Journal of Materials Research and Technology, 2023, 24: 6334-6347.  
[22] Xu H, Tian T, Zhang J, et al. Hot deformation behavior of the 25CrMo4 steel using a modified Arrhenius model[J]. Materials, 2022, 15(8): 2820.  
[23] Wu Yue, Liu Run, Zhan Xianqiang, et al. Austenite grain growth and its effect on the mechanical properties of Super304H heat-resistant steel[J]. Journal of Materials Engineering and Performance, 2022, 32(5): 2228-2236.  
[24] Zainul H, Tuan Z, Ireen A, et al. Austenite-grain-growth kinetics and mechanism in type 347H alloy steel for boiler tubes[J]. Advances in Materials Science, 2023, 23(3): 79-97.  
[25] Gorbachev I I, Korzunova E I, Popov V V, et al. Simulation of austenite grain growth in low-alloyed steels upon austenitization[J]. Physics of Metals and Metallography, 2023, 124(3): 290-295. |