[1] 胥福顺, 张 劲, 郭晓斌, 等. Al-Cu-Mg合金单晶应力时效析出相取向分布效应[J]. 材料热处理学报, 2017, 38(7): 33-38. Xu Fushun, Zhang Jin, Guo Xiaobin, et al. Precipitation orientation effect of Al-Cu-Mg alloy single crystal during stress aging[J]. Transactions of Materials and Heat Treatment, 2017, 38(7): 33-38. [2] Mei L, Chen X P, Wang C, et al. Good combination of strength and corrosion resistance in an Al-Cu-Mg alloy processed by a short-cycled thermomechanical treatment[J]. Materials Characterization, 2021, 181: 111469. [3] 陈思君, 陈送义, 陈 庚, 等. Mg含量对2A14铝合金组织和力学性能的影响[J]. 金属热处理, 2022, 47(4): 86-92. Chen Sijun, Chen Songyi, Chen Geng, et al. Effect of Mg content on microstructure and mechanical properties of 2A14 aluminum alloy[J]. Heat Treatment of Metals, 2022, 47(4): 86-92. [4] 李 侠, 贾品峰, 耿 旭, 等. 固溶工艺对2A12铝合金组织与性能的影响[J]. 金属热处理, 2025, 50(4): 213-217. Li Xia, Jia Pinfeng, Geng Xu, et al. Effect of solution treatment process on microstructure and properties of 2A12 aluminum alloy[J]. Heat Treatment of Metals, 2025, 50(4): 213-217. [5] Gao Y H, Cao L F, Yang C, et al. Co-stabilization of θ′-Al2Cu and Al3Sc precipitates in Sc-microalloyed Al-Cu alloy with enhanced creep resistance[J]. Materials Today Nano, 2019, 6: 100035. [6] 徐双钱, 戴志勇, 王子瑜. 热处理工艺对A16.5Zn-2.3Mg-2.5Cu-0.1Zr-0.2Sc合金组织和力学性能的影响[J]. 金属热处理, 2024, 49(7): 274-281. Xu Shuangqian, Dai Zhiyong, Wang Ziyu. Effect of heat treatment process on microstructure and mechanical properties of A16.5Zn-2.3Mg-2.5Cu-0.1Zr-0.2Sc alloy[J]. Heat Treatment of Metals, 2024, 49(7): 274-281. [7] 王会敏, 李炎光, 马秉馨. 时效工艺对2219铝合金组织和力学性能的影响[J]. 金属热处理, 2023, 48(10): 123-129. Wang Huimin, Li Yanguang, Ma Bingxin. Effect of aging process on microstructure and mechanical properties of 2219 aluminum alloy[J]. Heat Treatment of Metals, 2023, 48(10): 123-129. [8] 黄同瑊, 晁代义, 宋晓霖, 等. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(S1): 322-324. Huang Tongjian, Chao Daiyi, Song Xiaolin, et al. Effect of hot rolling process on microstructure and properties of Al-Cu-Mg alloy[J]. Materials Reports, 2020, 34(S1): 322-324. [9] 郑元凯, 李龙飞, 金 康, 等. Cu含量对重力铸造Al-Cu-Mg-Sc合金组织及力学性能的影响[J]. 金属热处理, 2022, 47(5): 53-58. Zheng Yuankai, Li Longfei, Jin Kang, et al. Influence of Cu content on microstructure and mechanical properties of Al-Cu-Mg-Sc alloy fabricated by gravity die casting[J]. Heat Treatment of Metals, 2022, 47(5): 53-58. [10] Milligan B, Ma D, Allard L, et al. Dislocation-θ′(Al2Cu) interactions during creep deformation of an Al-Cu alloy[J]. Scripta Materialia, 2022, 217: 114739. [11] 金弈龙, 刘东雨. 添加Fe、Ni对Al-Cu-Mg合金性能的影响[J]. 热加工工艺, 2022, 51(18): 138-140. Jin Yilong, Liu Dongyu. Effects of adding Fe and Ni on properties of Al-Cu-Mg alloys[J]. Hot Working Technology, 2022, 51(18): 138-140. [12] Wang J, Zhang S, Lu R, et al. A crack-free and high-strength Al-Cu-Mg-Mn-Zr alloy fabricated by laser powder bed fusion[J]. Materials Science and Engineering A, 2022, 854: 143731. [13] Han P C, Tao N R. Effect of deformation mechanisms on the strength-ductility trade-off of Cu and CuAl alloy[J]. Scripta Materialia, 2022, 212: 114559. [14] Yang C, Zhang P, Shao D, et al. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition[J]. Acta Materialia, 2016, 119: 68-79. [15] Zhang Z J, Qu Z, Xu L, et al. A general physics-based hardening law for single phase metals[J]. Acta Materialia, 2022, 231: 117877. [16] Zhang Z J, Qu Z, Xu L, et al. Relationship between strength and uniform elongation of metals based on an exponential hardening law[J]. Acta Materialia, 2022, 231: 117866. [17] Qu Z, Zhang Z J, Yan J X, et al. Examining the effect of the aging state on strength and plasticity of wrought aluminum alloys[J]. Journal of Materials Science & Technology, 2022, 122: 54-67. [18] Wei W, Zuo R, Xue D, et al. Effect of aging treatment on the precipitation behavior of a novel Al-Cu-Zr cast alloy[J]. Materials, 2022, 15(22): 8163. [19] Seeger A, Diehl J, Mader S, et al. Work-hardening and work-softening of face-centred cubic metal crystals[J]. Philosophical Magazine, 1957, 2(15): 323-350. [20] Orlova T S, Sadykov D I, Danilov D V, et al. Ultrafine-grained Al-Cu-Zr alloy with high-strength and enhanced plasticity[J]. Materials Letters, 2021, 303: 130490. [21] Hansen N. Boundary strengthening in undeformed and deformed polycrystals[J]. Materials Science and Engineering A, 2005, 409(1/2): 39-45. [22] Hou J P, Li R, Wang Q, et al. Breaking the trade-off relation of strength and electrical conductivity in pure Al wire by controlling texture and grain boundary[J]. Journal of Alloys and Compounds, 2018, 769: 96-109. [23] Wyrzykowski J W, Grabski M W. The Hall-Petch relation in aluminium and its dependence on the grain boundary structure[J]. Philosophical Magazine A, 1986, 53(4): 505-520. [24] Estrin Y. Dislocation theory based constitutive modelling: Foundations and applications[J]. Journal of Materials Processing Technology, 1998, 80-81: 33-39. |