金属热处理 ›› 2025, Vol. 50 ›› Issue (10): 167-173.DOI: 10.13251/j.issn.0254-6051.2025.10.026

• 工艺研究 • 上一篇    下一篇

高硬度镀锡基板硬度预测模型和组织演变

兰昊天, 宋乙峰, 岳重祥, 徐晓涵   

  1. 江苏省沙钢钢铁研究院有限公司, 江苏 张家港 215625
  • 收稿日期:2025-06-05 修回日期:2025-09-04 出版日期:2025-10-25 发布日期:2025-11-04
  • 通讯作者: 宋乙峰,高级工程师,硕士,E-mail: songyf-iris@shasteel.cn
  • 作者简介:兰昊天(1993—),男,工程师,硕士,主要研究方向为镀锡板产品与工艺,E-mail: lanht-iris@shasteel.cn。

Hardness prediction model and microstructure evolution of high-hardness tinplate substrate

Lan Haotian, Song Yifeng, Yue Chongxiang, Xu Xiaohan   

  1. Institute of Research of Iron and Steel, Shagang, Jiangsu Province, Zhangjiagang Jiangsu 215625, China
  • Received:2025-06-05 Revised:2025-09-04 Online:2025-10-25 Published:2025-11-04

摘要: 以高硬度T-5调质度冷轧板为研究对象,系统开展退火温度600~700 ℃、保温时间1~30 min的再结晶退火试验,获得具有不同组织与性能的镀锡基板。通过金相显微镜(OM)、扫描电镜(SEM)和透射电镜(TEM)等设备,系统表征了不同退火工艺下镀锡基板的组织演变规律。基于JMAK组织转变动力学方程与Arrhenius热激活理论方程联合构建了硬度预测模型,建立了镀锡基板的退火温度-保温时间-硬度关系图。结果表明:退火温度为600~620 ℃、保温时间为1 min时,镀锡基板组织中存在部分未再结晶区域,且伴随明显的带状组织。当退火温度提升至640 ℃或保温时间延长至10 min时,组织为铁素体+渗碳体,未再结晶组织和带状组织缺陷得到完全消除。当退火温度达到700 ℃时,铁素体明显长大并转变为等轴晶粒。所建立的硬度预测模型抽样检测的误差小于2%,最佳退火温度为645~690 ℃、保温时间为1~5 min,该退火工艺可使镀锡基板硬度稳定控制在(65±1) HR30Tm范围内。

关键词: 镀锡基板, 模型, 硬度, 再结晶, 退火

Abstract: Tinplate substrate with different microstructure and properties were produced from high hardness T-5 cold-rolled plate by systematical annealing test with annealing temperature between 600-700 ℃ and holding time of 1-30 min. The microstructure evolution law under different annealing processes was comprehensively characterized by using optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). A hardness prediction model was developed by integrating the JMAK phase transformation kinetic equation with the Arrhenius thermal activation theory equation, and the annealing temperature-time-hardness relationship diagram of the tinplate substrate was successfully established. The results indicate that when annealed at 600-620 ℃ for 1 min, partially unrecrystallized regions and distinct banded structures are observed in the microstructure of the tinplate substrate. When the annealing temperature is raised to 640 ℃ or the holding time is increased to 10 min, the microstructure transforms into ferrite and cementite with unrecrystallized structures and banded structure defects being completely eliminated. When the annealing temperature reaches 700 ℃, ferrite grains grow significantly and transform into equiaxed grains. The established hardness prediction model exhibits a sampling error of less than 2%. The optimal annealing process is identified as 645-690 ℃ for 1-5 min, which can stable control the hardness of tinplate substrate within (65±1) HR30Tm.

Key words: tinplate substrate, model, hardness, recrystallization, annealing

中图分类号: