[1] Zhang F C, Hong L K, Xu Y. Prospects for green steelmaking technology with low carbon emissions in China[J]. Carbon Energy, 2024, 6(2): 456-480. [2] Sun C J, Wang J, Zhou M J, et al. Process path for reducing carbon emissions from steel industry—Combined electrification and hydrogen reduction[J]. Processes, 2024, 12(1): 108. [3] 仇圣桃, 牛宇豪, 乔家龙, 等. 驱动电机用无取向硅钢开发与性能调控研究综述[J]. 安徽工业大学学报(自然科学版), 2024, 41(4): 350-364. Qiu Shengtao, Niu Yuhao, Qiao Jialong, et al. A review of the development and performance control of non-oriented silicon steel for drive motors[J]. Journal of Anhui University of Technology(Natural Science), 2024, 41(4): 350-364. [4] 姜世勇, 陈 祥, 林 媛, 等. 退火温度对超高强度无取向硅钢组织与性能的影响[J]. 金属热处理, 2024, 49(7): 254-261. Jiang Shiyong, Chen Xiang, Lin Yuan, et al. Effect of annealing temperature on microstructure and properties of ultra-high strength non-oriented silicon steel[J]. Heat Treatment of Metals, 2024, 49(7): 254-261. [5] 朱玉秀, 张建法, 刘世德, 等. 热轧板厚度对高牌号无取向硅钢磁性能的影响[J]. 安徽工业大学学报(自然科学版), 2024, 41(4): 450-456. Zhu Yuxiu, Zhang Jianfa, Liu Shide, et al. Effect of hot-rolled plate thickness on magnetic properties of high grade non-oriented silicon steel[J]. Journal of Anhui University of Technology(Natural Science), 2024, 41(4): 450-456. [6] 魏庆庆, 陈冬梅, 刘海涛. 退火温度对0.5%Si无取向硅钢组织、织构及磁性能的影响[J]. 电工钢, 2022, 4(3): 22-28. Wei Qingqing, Chen Dongmei, Liu Haitao. Effect of annealing temperature after cold rolling on microstructure, texture and magnetic properties of 0.5%Si non-oriented silicon steel[J]. Electrical Steel, 2022, 4(3): 22-28. [7] 彭宇凡, 陈天宇, 宋新莉, 等. 3.3%Si高强无取向电工钢再结晶组织演变及其对性能的影响[J]. 中国体视学与图像分析, 2024, 29(1): 54-63. Peng Yufan, Chen Tianyu, Song Xinli, et al. Evolution of recrystallization microstructure and mechanical properties of 3.3%Si high strength non-orientation silicon steel[J]. Chinese Journal of Stereology and Image Analysis, 2024, 29(1): 54-63. [8] 卢凤喜, 何 敏. 高牌号无取向电工钢生产技术[J]. 武钢技术, 2006, 44(6): 13-16. Lu Fengxi, He Min. Production techniques of high-grade non-oriented electromagnetic steel sheet[J]. WISCO Technology, 2006, 44(6): 13-16. [9] 洪陆阔, 艾立群. 浅谈固态炼钢新工艺[J]. 工业计量, 2015, 25(S1): 161-163. [10] Sun C J, Ai L, Hong L K, et al. Study on solid state steelmaking from thin cast iron sheets through decarburization in H2O-H2[J]. Ironmaking & Steelmaking, 2020, 47: 1015-1021. [11] 刘新亮, 艾立群, 高建新, 等. 气氛条件对铁碳合金薄带气-固反应脱碳的影响[J]. 钢铁钒钛, 2018, 39(3): 86-93. Liu Xinliang, Ai Liqun, Gao Jianxin, et al. Influence of atmosphere condition on iron sheet gas-solid decarburization process[J]. Iron Steel Vanadium Titanium, 2018, 39(3): 86-93. [12] 唐思文, 李鹏南, 彭成章, 等. 高碳锰铁固相脱碳研究[J]. 热加工工艺, 2014, 43(10): 97-100. Tang Siwen, Li Pengnan, Peng Chengzhang, et al. Solid phase decarburization process of high carbon ferromanganese[J]. Hot Working Technology, 2014, 43(10): 97-100. [13] 李亚强, 艾立群, 李 强, 等. 1 mm铁碳合金薄带气-固反应脱碳试验[J]. 钢铁, 2017, 52(5): 19-23, 35. Li Yaqiang, Ai Liqun, Li Qiang, et al. Experiment of gas-solid decarburization process of 1 mm Fe-C alloy ribbon[J]. Iron and Steel, 2017, 52(5): 19-23, 35. [14] 洪陆阔, 艾立群, 程 荣, 等. 铁碳合金薄带气固反应脱碳试验[J]. 钢铁, 2016, 51(3): 27-31. Hong Lukuo, Ai Liqun, Cheng Rong, et al. Experimental of gas-solid decarburization of Fe-C alloy ribbon[J]. Iron and Steel, 2016, 51(3): 27-31. [15] 孙彩娇, 艾立群, 洪陆阔, 等. Ar-CO-CO2气氛下铁碳合金薄带气固反应脱碳动力学研究[J]. 材料导报, 2021, 35(24): 24142-24146. Sun Caijiao, Ai Liqun, Hong Lukuo, et al. Kinetics of Fe-C alloy sheets during gas-solid decarbonization in Ar-CO-CO2[J]. Materials Reports, 2021, 35(24): 24142-24146. [16] 吴章汉, 胡守天, 郭 悦, 等. 退火条件对取向硅钢脱碳效果的影响[J]. 材料热处理学报, 2017, 38(2): 91-97. Wu Zhanghan, Hu Shoutian, Guo Yue, et al. Effects of annealing condition on decarburization of grain oriented silicon[J]. Transactions of Materials and Heat Treatment, 2017, 38(2): 91-97. [17] 魏 辉, 林 媛, 王红霞, 等. 二次冷轧中间退火温度对3. 5%Si无取向硅钢组织织构的影响机理[J]. 金属热处理, 2024, 49(3): 37-43. Wei Hui, Lin Yuan, Wang Hongxia, et al. Effect mechanism of intermediate annealing temperature on microstructure and texture of 3.5%Si non-oriented silicon steel during secondary cold rolling[J]. Heat Treatment of Metals, 2024, 49(3): 37-43. [18] 褚绍阳, 干 勇, 仇圣桃, 等. 高牌号无取向硅钢生产流程中织构控制研究现状[J]. 材料导报, 2024, 38(13): 203-211. Chu Shaoyang, Gan Yong, Qiu Shengtao, et al. Research status of texture control in the manufacturing process for high grade non-oriented silicon steel[J]. Materials Reports, 2024, 38(13): 203-211. [19] 乔向东, 严 蒋, 赵 强, 等. 无取向硅钢研究的进展[J]. 热处理, 2023, 38(3): 40-45. Qiao Xiangdong, Yan Jiang, Zhao Qiang, et al. Progress of research on non-oriented silicon steel[J]. Heat Treatment, 2023, 38(3): 40-45. [20] Kubota T. Recent progress on non-oriented silicon steel[J]. Steel Research International, 2005, 76(6): 464-470. [21] Tomida T. Decarburization of 3%Si-1.1%Mn-0.05%C steel sheets by silicon dioxide and development of {100}(012) texture[J]. Materials Transactions Jim, 2003, 44(6): 1096-1105. [22] 程朝阳, 钟柏林, 倪正轩, 等. 新能源汽车驱动电机用高强无取向硅钢力、磁性能调控研究进展[J]. 工程科学学报, 2023, 45(9): 1482-1492. Cheng Zhaoyang, Zhong Bolin, Ni Zhengxuan, et al. Research progress on simultaneous control of mechanical and magnetic properties of high-strength non-oriented silicon steel for new energy vehicle driving motors[J]. Chinese Journal of Engineering, 2023, 45(9): 1482-1492. |