[1] 吴振江. 铝合金导体应用发展历程及现状[J]. 有色金属材料与工程, 2018, 39(4): 42-48. Wu Zhengjiang. Development andsituation of aluminum alloy conductor[J]. Nonferrous Metal Materials and Engineering, 2018, 39(4): 42-48. [2] 冯永平, 林高用, 刘金霞, 等. 高电导率Al-Mg-Si铝合金挤压材研制[J]. 世界有色金属, 2017(4): 28-31. Feng Yongping, Lin Gaoyong, Liu Jinxia, et al. Development of extruded 6101 aluminum alloy with high conductivity[J]. World Nonferrous Metals, 2017(4): 28-31. [3] 李星辉. 熔体复合处理和微观组织调控对6101铝合金导电和力学性能的研究[D]. 淄博: 山东理工大学, 2023. [4] Lin Gaoyong, Zhang Zongpeng, Wang Hongyang, et al. Enhanced strength and electrical conductivity of Al-Mg-Si alloy by thermo-mechanical treatment[J]. Materials Science and Engineering A, 2016, 650: 210-217. [5] 游玉萍. 时效处理工艺对6101铝合金性能的影响[J]. 热加工工艺, 2019, 48(22): 172-175. You Yuping. Effect ofaging treatment process on properties of 6101 aluminum alloy[J]. Hot Working Technology, 2019, 48(22): 172-175. [6] 杨 颖, 张 瑜, 王宇鑫, 等. 高导电铝硅合金的研究进展[J]. 金属功能材料, 2010, 17(3): 96-99. Yang Ying, Zhang Yu, Wang Yuxin, et al. Development of high electrical conductive Al-Si alloy[J]. Metallic Functional Materials, 2010, 17(3): 96-99. [7] 张 强, 郭 锋, 李志强, 等. 硼化处理对导电铝Ti、V含量以及性能影响的研究[J]. 铸造技术, 2007, 28(10): 1338-1340. Zhang Qiang, Guo Feng, Li Zhiqiang, et al. Influence of boronization treatment on the contents of Ti and V and properties of electrical aluminum[J]. Foundry Technology, 2007, 28(10): 1338-1340. [8] ASTM B317/B317M-2015, Standard specification for aluminum-alloy extruded bar, rod, tube, pipe, structural profiles, and profiles for electrical purposes (bus conductor)[S]. [9] 孙 远. 高导高强耐热铝导体材料的研究[D]. 长沙: 中南大学, 2010. [10] 李丰庆. 硼对铝中杂质元素的作用及其对导电率的影响[D]. 大连: 大连理工大学, 2003. [11] 杨慧敏, 苏彦庆, 郭景杰, 等. B元素对Ti-46Al和Ti-46Al-5Nb合金柱状晶组织的影响[J]. 金属学报, 2008, 44(10): 1213-1218. Yang Huimin, Su Yanqing, Guo Jingjie, et al. Effects of B addition on the columnar structures of Ti-46Al and Ti-46A1-5Nb alloys[J]. Acta Metallurgica Sinica, 2008, 44(10): 1213-1218. [12] 梁振宇. 合金元素对 Al-Mg-Si 合金导体材料组织与性能的影响研究[D]. 长沙: 湖南大学, 2011. [13] Cui Xiaoli, Wu Yuying, Zhang Guojun. The improvement of boron treatment efficiency and electrical conductivity of AA1070Al achieved by trace Ti assistant[J]. Journal of Alloys and Compounds, 2018, 735: 62-67. [14] Kamil Majchrowicz, Zbigniew Pakiela, Witold Chrominski, et al. Enhanced strength and electrical conductivity of ultrafine-grained Al-Mg-Si alloy processed by hydrostatic extrusion[J]. Materials Characterization, 2018, 135: 104-114. [15] Sunde J K, Marioara C D, Wenner S, et al. On the microstructural origins of improvements in conductivity by heavy deformation and ageing of Al-Mg-Si alloy 6101[J]. Materials Characterization, 2021, 176: 111073. [16] 刘振兴. 6101铝合金的时效热处理研究[D]. 长沙: 中南大学, 2013. [17] 王桂芹, 李丰庆, 李长茂, 等. 硼对含硅铝和含铁铝导电性能的影响[J]. 特种铸造及有色合金, 2003(3): 15-17. Wang Guiqin, Li Fengqing, Li Changmao, et al. Effects of B on theelectric conductivity of Fe or Si containing aluminum[J]. Special Casting and Nonferrous Alloys, 2003(3): 15-17. [18] Sedat K, Ibrahim U. Inoculation of transition elements by addition of AlB2 and AlB12 to decrease detrimental effect on the conductivity of 99.6% aluminum in CCL for manufacturing of conductor[J]. Journal of Materials Processing Technology, 2005, 160: 174-182. [19] 王天资, 巫瑞智, 张景怀, 等. 铝导电材料的研究进展[J]. 材料科学与工艺, 2014(6): 53-61. Wang Tianzi, Wu Ruizhi, Zhang Jinghuai, et al. Development of aluminum conductive materials[J]. Materials Science and Technology, 2014(6): 53-61. [20] Cui Xiaoli, Wu Yuying, Liu Xiangfa, et al. Effects of grain refinement and boron treatment on electrical conductivity and mechanical properties of AA1070 aluminum[J]. Materials and Design, 2015, 86: 397-403. [21] 刘振兴, 张新明, 唐建国. 6101铝合金时效过程中析出相对电阻率的影响[J]. 功能材料, 2014, 45(2): 2119-2123, 2128. Liu Zhenxing, Zhang Xinming, Tang Jianguo. The influences of precipitates on resistivity of 6101 aluminium alloy in aging[J]. Journal of Functional Materials, 2014, 45(2): 2119-2123, 2128. |