[1] 王建梅. 现代油膜轴承理论与技术研究进展[J]. 轴承, 2022(8): 1-8. Wang Jianmei. Research progress of theory and technology for modern oil-film bearings[J]. Bearing, 2022(8): 1-8. [2] 黄庆学. 高品质钢铁板带轧制关键装备与技术研究进展[J]. 机械工程学报, 2023, 59(20): 34-63. Huang Qingxue. Research progress on key equipment and technology of high quality steel plate and strip rolling[J]. Journal of Mechanical Engineering, 2023, 59(20): 34-63. [3] Zhu L D, Xue P S, Lan Q, et al. Recent research and development status of laser cladding: A review[J]. Optics and Laser Technology, 2021, 138: 106915. [4] Ding H H, Cui T, Wang W J, et al. Laser cladding WC/Fe composite coating on nose rail of turnout: Microstructure characteristics and wear behaviors[J]. Wear, 2025: 205929. [5] 谢志颖, 刘常升, 吴 琼, 等. 激光熔覆制备高硬耐磨涂层的研究综述[J]. 表面技术, 2023, 52(7): 25-40. Xie Zhiying, Liu Changsheng, Wu Qiong, et al. High hardness and wear-resistant coatings fabricated by laser cladding[J]. Surface Technology, 2023, 52(7): 25-40. [6] 李垭焓, 谭诚香, 李梦瑶, 等. 激光熔覆铁基合金涂层的研究进展[J]. 表面技术, 2024, 53(6): 11-27, 66. Li Yahan, Tan Chengxiang, Li Mengyao, et al. Research progress of laser-cladding Fe-based alloy coating[J]. Surface Technology, 2024, 53(6): 11-27, 66. [7] Chen C, Bai Q F, Li Q H, et al. Study on the performance of Fe-based alloy coating on 40Cr substrate surface[J]. Journal of Materials Engineering and Performance, 2025, 32(2): 1586-1595. [8] 乔青峰, 姚小春, 张志坚, 等. 锁紧销表面激光熔覆铁基和镍基合金的组织与性能[J]. 金属热处理, 2024, 49(6): 159-164. Qiao Qingfeng, Yao Xiaochun, Zhang Zhijian, et al. Microstructure and properties of laser cladding iron-based and nickel-based alloys on surface of locking pin[J]. Heat Treatment of Metals, 2024, 49(6): 159-164. [9] 何 炜, 王燕燕, 舒林森. 扫描速度对高速激光熔覆316L不锈钢涂层组织与性能的影响[J]. 金属热处理, 2023, 48(8): 248-253. He Wei, Wang Yanyan, Shu Lisen. Effect of scanning speed on microstructure and properties of 316L stainless steel coatings by high-speed laser cladding[J]. Heat Treatment of Metals, 2023, 48(8): 248-253. [10] Cheng Y H, Cui R, Wang H Z, et al. Effect of processing parameters of laser on microstructure and properties of cladding 42CrMo steel[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(5): 1715-1724. [11] Zhang K, Ye T Q, Geng J T, et al. Thermodynamic behavior and microstructure evolution of Inconel 718 alloy by laser metal deposition[J]. International Journal of Heat and Mass Transfer, 2025, 236(2): 126330. [12] Nascimento E J G, Magalhães E D S, Paes L E D S. A literature review in heat source thermal modeling applied to welding and similar processes[J]. The International Journal of Advanced Manufacturing Technology, 2023, 126: 2917-2957. [13] Shao J Y, Yu G, He X L, et al. Grain size evolution under different cooling rate in laser additive manufacturing of superalloy[J]. Optics and Laser Technology, 2019, 119: 105662. [14] Zhao J X, Wang G, Wang X Y, et al. Multicomponent multiphase modeling of dissimilar laser cladding process with high-speed steel on medium carbon steel[J]. International Journal of Heat and Mass Transfer, 2020, 148: 118990. [15] Li C, Yu Z B, Gao J X, et al. Numerical simulation and experimental study of cladding Fe60 on an ASTM 1045 substrate by laser cladding[J]. Surface and Coatings Technology, 2019, 357: 965-977. [16] Zhou S F, Huang Y J, Zeng X Y, et al. Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding[J]. Materials Science and Engineering A, 2008, 480: 564-572. |