[1] 中国机械工程学会铸造分会. 铸造手册 第3卷: 铸造非铁合金[M]. 4版. 北京: 机械工业出版社, 2021. [2] 颜鸣皋, 吴学仁, 朱知寿. 航空材料技术的发展现状与展望[J]. 航空制造技术, 2003(12): 19-25. Yan Minggao, Wu Xueren, Zhu Zhishou. Recent progress and prospects for aeronautical material technologies[J]. Aeronautical Manufacturing Technology, 2003(12): 19-25. [3] 洪润洲, 杜辰宇, 师可馨, 等. 耐热铸造Al-Cu-Mn合金高温力学性能与微观组织[J]. 特种铸造及有色合金, 2024, 44(7): 954-958. Hong Runzhou, Du Chenyu, Shi Kexin, et al. Properties and microstructure of Al-Cu-Mn heat-resistant alloy at high temperature[J]. Special Casting and Nonferrous Alloys, 2024, 44(7): 954-958. [4] 李 波, 张东辉, 洪 黎. 航空发动机燃油热管理系统仿真及试验验证[J]. 燃气涡轮试验与研究, 2019, 32(5): 29-34. Li Bo, Zhang Donghui, Hong Li. Simulation and experimental verification of aero-engine fuel thermal management system[J]. Gas Turbine Experiment and Research, 2019, 32(5): 29-34. [5] Li S L, Huang Z Q, Chen W P, et al. TTT curves of an Al-Mg-Si-Mn alloy[J]. Transactions of Materials and Heat Treatment, 2013, 34(4): 57-62. [6] 马蓼奕, 杜青胤, 李世键, 等. 利用JMatPro软件模拟计算16CrSiNi钢热处理参数及热物理性能[J]. 金属热处理, 2024, 49(7): 42-46. Ma Liaoyi, Du Qingyin, Li Shijian, et al. Simulation and calculation of heat treatment parameters and thermophysical properties of 16CrSiNi steel using JMatPro software[J]. Heat Treatment of Metals, 2024, 49(7): 42-46. [7] 蔺虹宾, 何跃斌, 蒋 辉, 等. 基于JMatPro软件对7050铝合金析出相的热力学模拟计算[J]. 中国铸造装备与技术, 2019, 54(3): 21-24. Lin Hongbin, He Yuebin, Jiang Hui, et al. Thermodynamic simulation calculation of precipitated phase of 7050 aluminum alloy based on JMatPro software[J]. China Foundry Machinery and Technology, 2019, 54(3): 21-24. [8] 王 郁, 王俊升, 薛程鹏, 等. 微合金化对铝合金高温析出相影响的研究进展[J]. 航空制造技术, 2021, 64(15): 68-77, 85. Wang Yu, Wang Junsheng, Xue Chengpeng, et al. Review of microalloying effects on high temperature Al3X precipitates in Al alloys[J]. Aeronautical Manufacturing Technology, 2021, 64(15): 68-77, 85. [9] 陈金龙. 新型耐热铝合金成分设计及组织性能研究[D]. 南京: 东南大学, 2020. [10] 宋跃文, 侯击波, 毛红奎, 等. 基于DSC分析的Al-7Si-1. 5Cu-0. 5Mg合金热处理工艺研究[J]. 热加工工艺, 2022, 51(8): 139-142, 145. Song Yuewen, Hou Jibo, Mao Hongkui, et al. Study on heat treatment process of Al-Si-Cu-Mg alloy based on DSC analysis[J]. Hot Working Technology, 2022, 51(8): 139-142, 145. [11] Michi R A, Sisco K, Bahl S, et al. Microstructural evolution and strengthening mechanisms in a heat-treated additively manufactured Al-Cu-Mn-Zr alloy[J]. Materials Science and Engineering A, 2022, 840: 142928. [12] Zhou L, Wu C L, Xie P, et al. A hidden precipitation scenario of the θ′-phase in Al-Cu alloys[J]. Journal of Materials Science and Technology, 2021, 75: 126-138. [13] Gao Y H, Cao L F, Yang C, et al. Co-stabilization of θ′-Al2Cu and Al3Sc precipitates in Sc-microalloyed Al-Cu alloy with enhanced creep resistance[J]. Materials Today Nano, 2019, 6: 100035. [14] Bahl S, Rakhmonoy J U, Kenel C, et al. Effect of grain-boundary θ-Al2Cu precipitates on tensile and compressive creep properties of cast Al-Cu-Mn-Zr alloys[J]. Materials Science and Engineering A, 2022, 840: 142946. [15] Bahl S, Xiong L, Allard L F, et al. Aging behavior and strengthening mechanisms of coarsening resistant metastable θ′ precipitates in an Al-Cu alloy[J]. Materials and Design, 2021, 198: 109378. [16] 崔忠圻, 覃耀春. 金属学与热处理(第)[M]. 2版. 北京: 机械工业出版社, 2007. |