[1] 刘世锋, 宋 玺, 薛 彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3): 77-94. Liu Shifeng, Song Xi, Xue Tong, et al. Application and development of titanium alloy and titanium matrix composites in aerospace field[J]. Journal of Aeronautical Materials, 2020, 40(3): 77-94. [2] 张 妍, 庞有俊, 李 杨. 钛合金与汽车轻量化技术[J]. 时代汽车, 2019(19): 12-14. [3] Koizumi H, Takeuchi Y, Imai H, et al. Application of titanium and titanium alloys to fixed dental prostheses[J]. Journal of Prosthodontic Research, 2019, 63(3): 266-270. [4] Azgomi N, Tetteh F, Duntu S, et al. Effect of heat treatment on the microstructural evolution and properties of 3D-printed and conventionally produced medical-grade Ti6Al4V ELI alloy[J]. Metallurgical and Materials Transactions A, 2021, 52(8): 3382-3400. [5] 徐全斌, 刘诗园. 国外航空航天领域钛及钛合金牌号及应用[J]. 世界有色金属, 2022(16): 96-99. Xu Quanbin, Liu Shiyuan. Grades of titanium and titanium alloys developed in western countries and their applications in the aerospace industry[J]. World Nonferrous Metals, 2022(16): 96-99. [6] 吴献斌. 探索钛及钛合金表面阳极氧化技术在医疗器械产品中的应用[J]. 冶金管理, 2021(11): 38-39. [7] 戴世娟, 朱运田, 陈 锋. 新型医用β钛合金研究的发展现状及加工方法[J]. 重庆理工大学学报(自然科学), 2016, 30(4): 28-34. Dai Shijuan, Zhu Yuntian, Chen Feng. Present status and processing methods of novel β titanium alloys for biomedical applications[J]. Journal of Chongqing University of Technology: Natural Science, 2016, 30(4): 28-34. [8] 荚利宏, 王 婷, 于承雪, 等. 钛合金在轨道交通车辆中的应用现状[J]. 科技创新与应用, 2023, 13(5): 164-168. [9] 张瑞珠, 邵玉飞. 钛合金微弧氧化研究现状与进展[J]. 河南科技, 2021, 40(13): 42-44. Zhang Ruizhu, Shao Yufei. Research status and progress of micro arc oxidation on titanium alloys[J]. Henan Science and Technology, 2021, 40(13): 42-44. [10] 董凯辉, 宋影伟, 韩恩厚. 钛合金耐磨微弧氧化制备技术的研究进展[J]. 表面技术, 2021, 50(7): 57-65. Dong Kaihui, Song Yingwei, Han Enhou. Research progress on the preparation of wear-resistant micro-arc oxidation coatings on titanium alloys[J]. Surface Technology, 2021, 50(7): 57-65. [11] 马圣林, 张蓬予, 朱新河, 等. 基于微弧氧化技术耐磨减摩涂层的研究进展[J]. 表面技术, 2020, 49(6): 104-113. Ma Shenglin, Zhang Pengyu, Zhu Xinhe, et al. Research progress of wear-resistant antifriction coating based on micro-arc oxidation technology[J]. Surface Technology, 2020, 49(6): 104-113. [12] 余国庆, 高书刊, 王国迪, 等. 钛合金微弧氧化工艺及性能评价[J]. 热加工工艺, 2021, 50(6): 13-17. Yu Guoqing, Gao Shukan, Wang Guodi, et al. Microarc oxidation process and performance evaluation of titanium alloy[J]. Hot Working Technology, 2021, 50(6): 13-17. [13] 程法嵩. TC4钛合金微弧氧化成膜机理研究[D]. 南昌: 南昌航空大学, 2018. [14] 薛文斌, 邓志威, 陈如意, 等. 钛合金在硅酸盐溶液中微弧氧化陶瓷膜的组织结构[J]. 金属热处理, 2000, 25(2): 5-7. Xue Wenbin, Deng Zhiwei, Chen Ruyi, et al. Microstructure of ceramic coating formed by microarc oxidation in silicate solution on Ti-6Al-4V alloy[J]. Heat Treatment of Metals, 2000, 25(2): 5-7. [15] Xue W B, Wang C, Chen R Y, et al. Structure and properties characterization of ceramic coatings produced on Ti-6Al-4V alloy by micro-arc oxidation in aluminate solution[J]. Materials Letters, 2002, 52(6): 435-441. [16] 万 李, 沙庆涛, 徐培麒. 应用微弧氧化技术处理钛合金表面[J]. 航空制造技术, 2009(10): 87-89. Wan Li, Sha Qingtao, Xu Peiqi. Dealing with surface of titanium alloy by micro arc oxidation technology[J]. Aeronautical Manufacturing Technology, 2009(10): 87-89. [17] 崔 嵬, 呼 丹, 高广睿, 等. 电压对TC4合金K2ZrF6-Na2SiO3-(NaPO3)6体系微弧氧化膜性能的影响[J]. 电镀与涂饰, 2019, 38(1): 23-28. Cui Wei, Hu Dan, Gao Guangrui, et al. Effect of voltage on properties of micro-are oxidation film on TC4 alloy prepared in K2ZrF6-Na2SiO3-(NaPO3)6 electrolyte[J]. Electroplating and Finishing, 2019, 38(1): 23-28. [18] 郝国栋, 罗丽妍, 苏爽月, 等. 钛合金双极微弧氧化膜层抗高温氧化性能[J]. 当代化工, 2020, 49(1): 2383-2387. Hao Guodong, Luo Liyan, Su Shuangyue, et al. Research on preparation and properties of micro-arc bipolar oxide coating of titanium alloy[J]. Contemporary Chemical Industry, 2020, 49(1): 2383-2387. [19] 朱东林, 孙登月, 杨家辉, 等. 等离子喷涂WC-20Cr3C2-7Ni/8YSZ复合涂层的组织及摩擦学性能[J]. 金属热处理, 2023, 48(2): 256-262. Zhu Donglin, Sun Dengyue, Yang Jiahui, et al. Microstructure and tribological properties of WC-20Cr3C2-7Ni/8YSZ composite coatings by plasma spraying[J]. Heat Treatment of Metals, 2023, 48(2): 256-262. [20] 贾文婷, 王文波, 田林海, 等. 硅酸钠浓度对Ti3Al基合金微弧氧化层生长及其摩擦磨损性能的影响[J]. 表面技术, 2019, 48(7): 104-111. Jia Wenting, Wang Wenbo, Tian Linhai, et al. Effect of Na2SiO3 concentration on growth and friction and wear properties of micro-arc oxide coatings on Ti3Al-based alloys[J]. Surface Technology, 2019, 48(7): 104-111. [21] 黄建余, 冯洲鹏, 李 京, 等. 提高AZ91镁合金耐蚀性的研究进展[J]. 热加工工艺, 2010, 39(16): 63-66. Huang Jianyu, Feng Zhoupeng, Li Jing, et al. Research progress of enhancing corrosion resistance of AZ91 alloy[J]. Hot Working Technology, 2010, 39(16): 63-66. [22] 才文兰, 史海兰, 王振霞, 等. 纳米ZrO2微粒对TC4合金表面微弧氧化陶瓷膜层耐蚀及耐磨性能的影响[J]. 表面技术, 2019, 48(7): 89-96. Cai Wenlan, Shi Hailan, Wang Zhenxia, et al. Effect of nano-ZrO2 particles on corrosive and abrasive performances of the micro-arc oxidized ceramic film on TC4 alloy surface[J]. Surface Technology, 2019, 48(7): 89-96. [23] 吕天舒. 钛合金表面微弧氧化涂层的成分调控与力学、摩擦学及腐蚀性能关系的研究[D]. 长春: 吉林大学, 2024. [24] 邵玉飞. TC4钛合金微弧氧化复合膜层制备及性能研究[D]. 郑州: 华北水利水电大学, 2022. |