[1] Caballero F G, Bhadeshia H, Mawella K, et al. Design of novel high strength bainitic steels: Part 1[J]. Materials Science and Technology, 2001, 17(5): 512-516. [2] Nawaz B, Long X Y, Yang Z N, et al. Effect of magnetic field on microstructure and mechanical properties of austempered 70Si3MnCr steel[J]. Materials Science and Engineering A, 2019, 759: 11-18. [3] Kumar A, Singh A. Deformation mechanisms in nanostructured bainitic steels under torsion[J]. Materials Science and Engineering A, 2020, 770: 138528. [4] Dijk N H, Butt A M, Zhao L, et al. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling[J]. Acta Materialia, 2005, 53(20): 5439-5447. [5] Knijf D D, Petrov R, Föjer C, et al. Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel[J]. Materials Science and Engineering A, 2014, 615: 107-115. [6] 刘 曼, 徐 光, 周明星, 等. 等温温度和时间对超级贝氏体钢Fe-0.40C-2.2Mn-1.5Si相变和组织性能的影响[J]. 武汉科技大学学报, 2017, 40(5): 345-350. Liu Man, Xu Guang, Zhou Mingxing, et al. Effects of isothermal temperature and holding time on phase transformation, microstructure and properties of super bainitic steel Fe-0.40C-2.2Mn-1.5Si[J]. Journal of Wuhan University of Science and Technology, 2017, 40(5): 345-350. [7] 王晓晖, 康 健, 李振垒, 等. 等温时间对低硅含铝热轧TRIP钢组织性能的影响[J]. 钢铁, 2019, 54(5): 54-59. Wang Xiaohui, Kang Jian, Li Zhenlei, et al. Effect of isothermal time on microstructures and mechanical properties in hot rolled TRIP steels with low Si and more Al[J]. Iron and Steel, 2019, 54(5): 54-59. [8] Luo P, Gao G, Zhang H, et al. On structure-property relationship in nanostructured bainitic steel subjected to the quenching and partitioning process[J]. Materials Science and Engineering A, 2016, 661: 1-8. [9] Varshney A, Sangal S, Pramanick A K, et al. On the extent of transformation of austenite to bainitic ferrite and carbide during austempering of high Si steel for prolonged duration and its effect on mechanical properties[J]. Materials Science and Engineering A, 2020, 793: 139764. [10] Klemm-Toole J, Benz J, Vieira I, et al. Strengthening mechanisms influenced by silicon content in high temperature tempered martensite and bainite[J]. Materials Science and Engineering A, 2020, 786: 139419. [11] Kong J, Xie C. Effect of molybdenum on continuous cooling bainite transformation of low-carbonmicroalloyed steel[J]. Materials and Design, 2006, 27(10): 1169-1173. [12] Cullity B D. Elements of X-Ray Diffraction[M]. New York: Addison-Wesley, 1978. [13] Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel[J]. Scripta Materialia, 2013, 68(5): 321-324. [14] Oliveira P G B D, Aureliano R T J, Casteletti L C, et al. Effect of low-temperature austempering and quenching and partitioning treatments on adhesive wear resistance of high-silicon multiphase steels[J]. Journal of Materials Engineering and Performance, 2020, 29(6): 3542-3550. [15] 李 伟, 秦羽满, 王艳辉, 等. 低温贝氏体转变对渗碳纳米贝氏体轴承钢表层组织与性能的影响[J]. 燕山大学学报, 2021, 45(1): 25-32. Li Wei, Qin Yuman, Wang Yanhui, et al. Effects of low temperature bainite transition on surface structureand properties of carburized nano-bainite bearing steel[J]. Journal of Yanshan University, 2021, 45(1): 25-32. [16] Acharya P P, Udupa R, Bhat R. Microstructure and mechanical properties of austempered AISI 9255 high-silicon steel[J]. Materials Science and Technology, 2017, 34(3): 355-365. |