[1] 符云龙, 张 旭, 魏秀军. 轴承钢发展现状及发展趋势[J]. 山西冶金, 2023, 46(11): 80-81.
Fu Yunlong, Zhang Xu, Wei Xiujun. Development status and trends of bearing steel[J]. Shanxi Metallurgy, 2023, 46(11): 80-81.
[2] 尤绍军. 我国轴承钢及热加工技术的现状和研究方向[J]. 金属热处理, 2012, 37(1): 119-125.
You Shaojun. Status and research directions of bearing steels and heat processes in China[J]. Heat Treatment of Metals, 2012, 37(1): 119-125.
[3] 王 坤, 胡 锋, 周 雯, 等. 轴承钢研究现状及发展趋势[J]. 中国冶金, 2020, 30(9): 119-128.
Wang Kun, Hu Feng, Zhou Wen, et al. Research status and development trend of bearing steel[J]. China Metallurgy, 2020, 30(9): 119-128.
[4] 李文彬. 风电齿轮箱轴承用钢100CrMnSi6-4的开发[J]. 山东冶金, 2022, 44(3): 14-16.
Li Wenbin. Development of steel 100CrMnSi6-4 for wind turbine gearbox bearings[J]. Shandong Metallurgical, 2022, 44(3): 14-16.
[5] Napadłek W. Analysis of selected properties 100CrMnSi6-4 surface layer after laser micro-smelting[J]. Archives of Metallurgy and Materials, 2017, 62(2): 757-762.
[6] Piasecki A, Kotkowiak M, Kulka M. The effect of CaF2 and BaF2 solid lubricants on wear resistance of laser-borided 100CrMnSi6-4 bearing steel[J]. Archives of Materials Science and Engineering, 2017, 86(1): 15-23.
[7] Zhang Q, Li L, Gao J, et al. Unraveling the effects of strain-induced precipitation on continuous cooling ferrite transformation in titanium-molybdenum microalloyed steel[J]. Journal of Materials Research and Technology, 2024, 33: 906-918.
[8] 张小垒, 李 辉, 徐士新, 等. GCr15钢连续冷却过程中的相变和组织演变[J]. 金属热处理, 2014, 39(3): 99-102.
Zhang Xiaolei, Li Hui, Xu Shixin, et al. Phase transformation and microstructure evolution of GCr15 steel during continuous cooling[J]. Heat Treatment of Metals, 2014, 39(3): 99-102.
[9] 杜忠泽, 路 超, 王庆娟, 等. 终轧后G20CrNi2MoA轴承钢连续冷却相变规律[J]. 材料热处理学报, 2017, 38(11): 80-84.
Du Zhongze, Lu Chao, Wang Qingjuan, et al. Continuous cooling transformation law of G20CrNi2MoA bearing steel after finishing rolling[J]. Transactions of Materials and Heat Treatment, 2017, 38(11): 80-84.
[10] 崔 毅, 张雲飞, 俞 峰, 等. 高温轴承钢M50连续冷却转变曲线的测定与分析[J]. 特殊钢, 2022, 43(3): 85-90.
Cui Yi, Zhang Yunfei, Yu Feng, et al. Determination and analysis on continuous cooling transformation curve of high temperature bearing steel M50[J]. Special Steel, 2022, 43(3): 85-90.
[11] 徐 光, 王 巍, 张鑫强, 等. 金属材料CCT曲线测定及绘制[M]. 北京: 化学工业出版社, 2009.
[12] 路 峰, 李 琦, 孙雪娇, 等. 18CrNiMo7-6风电齿轮钢的动态CCT曲线[J]. 金属热处理, 2024, 49(9): 86-91.
Lu Feng, Li Qi, Sun Xuejiao, et al. Dynamic CCT curve of 18CrNiMo7-6 wind power gear steel[J]. Heat Treatment of Metals, 2024, 49(9): 86-91.
[13] 孙 岩, 赵 亮, 安治国, 等. GCr15SiMn轴承钢的连续冷却转变[J]. 金属热处理, 2018, 43(6): 24-27.
Sun Yan, Zhao Liang, An Zhiguo, et al. Continuous cooling transformation of GCr15SiMn bearing steel[J]. Heat Treatment of Metals, 2018, 43(6): 24-27.
[14] 霍向东, 刘 江, 李烈军, 等. 终轧工艺及轧后冷速对GCr15SiMn钢相变组织的影响[J]. 材料热处理学报, 2017, 38(2): 118-124.
Huo Xiangdong, Liu Jiang, Li Liejun, et al. Effect of finish rolling process and cooling rate after rolling on transformation microstructure of GCr15SiMn steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(2): 118-124.
[15] 王艳辉, 李雪峰, 刘柏松, 等. 热处理工艺对微合金化等温马氏体轴承钢组织与力学性能的影响[J]. 材料热处理学报, 2023, 44(11): 176-183, 191.
Wang Yanhui, Li Xuefeng, Liu Bosong, et al. Effect of heat treatment process on microstructure and mechanical properties of microalloyed isothermal martensite bearing steel[J]. Transactions of Materials and Heat Treatment, 2023, 44(11): 176-183, 191.
[16] 徐栋栋, 陈学文, 庞庆海, 等. SA-765 Gr.Ⅱ钢过冷奥氏体的连续冷却转变行为[J]. 材料热处理学报, 2024, 45(9): 192-198.
Xu Dongdong, Chen Xuewen, Pang Qinghai, et al. Continuous cooling transformation behavior of supercooled austenite of SA-765 Gr.Ⅱ steel[J]. Transactions of Materials and Heat Treatment, 2024, 45(9): 192-198.
[17] 赵晓宇, 黄伟波, 鲁文佳, 等. GCr15钢的等温冷却和连续冷却转变行为[J]. 金属热处理, 2025, 50(5): 46-50.
Zhao Xiaoyu, Huang Weibo, Lu Wenjia, et al. Isothermal cooling and continuous cooling transformation behavior of GCr15 steel[J]. Heat Treatment of Metals, 2025, 50(5): 46-50.
[18] 田仲杰, 张雲飞, 曹文全, 等. 第三代航空轴承钢CSS-42L的连续冷却转变曲线[J]. 金属热处理, 2024, 49(12): 175-178.
Tian Zhongjie, Zhang Yunfei, Cao Wenquan, et al. Continuous cooling transformation curve of the third-generation aviation bearing steel CSS-42L[J]. Heat Treatment of Metals, 2024, 49(12): 175-178. |