[1] 刘 涛, 史正宏, 雷经发, 等. TC4钛合金在不同固溶温度下的微观结构及动态力学行为[J]. 材料热处理学报, 2024, 45(12): 100-109.
Liu Tao, Shi Zhenghong, Lei Jingfa, et al. Microstructure and dynamic mechanical behavior of TC4 titanium alloy at different solution treatment temperatures[J]. Transactions of Materials and Heat Treatment, 2024, 45(12): 100-109.
[2] 陆彦良, 吴永斌, 黄联杰, 等. TC6钛合金叶片形变热处理工艺[J]. 锻压技术, 2024, 49(11): 169-174.
Lu Yanliang, Wu Yongbin, Huang Lianjie, et al. Deformation heat treatment process of TC6 titanium alloy blades[J]. Forging and Stamping Technology, 2024, 49(11): 169-174.
[3] 王龙刚, 包婷婷, 谭长生, 等. 形变热处理对TC9钛合金组织及拉伸性能的影响[J]. 材料热处理学报, 2024, 45(11): 85-92.
Wang Longgang, Bao Tingting, Tan Changsheng, et al. Effect of thermomechanical treatment on microstructure and tensile properties of TC9 titanium alloy[J]. Transactions of Materials and Heat Treatment, 2024, 45(11): 85-92.
[4] 赵 锋, 王 啸, 郭树祥. α+β两相型钛合金TC4低成本制备及防护性能研究[J]. 中国材料进展, 2024, 43(11): 1030-1034.
Zhao Feng, Wang Xiao, Guo Shuxiang. Low cost preparation and protective properties of α+β two-phase titanium alloy TC4[J]. Materials China, 2024, 43(11): 1030-1034.
[5] 岳 旭, 陈 威, 阿热达克·阿力玛斯, 等. 熔炼工艺对Ti-662合金化学成分均匀性的影响[J]. 钛工业进展, 2022, 39(4): 1-5.
Yue Xu, Chen Wei, Agedak Alimas, et al. Effect of melting process on chemical composition uniformity of Ti-662 alloy[J]. Titanium Industry Progress, 2022, 39(4): 1-5.
[6] 林来儿, 翟欣姣, 白鑫洁, 等. 不同退火温度对Ti662钛合金组织演变和拉伸性能影响[J]. 四川冶金, 2024, 46(4): 30-34.
Lin Laier, Zhai Xinjiao, Bai Xinjie, et al. Effects of different annealing temperatures on microstructure evolution and tensile properties of Ti662 titanium alloy[J]. Sichuan Metallurgy, 2024, 46(4): 30-34.
[7] 张 钧, 李炎洲, 董利民, 等. 退火温度对Ti662钛合金显微组织和拉伸性能的影响[J]. 沈阳大学学报(自然科学版), 2020, 32(2): 99-102.
Zhang Jun, Li Yanzhou, Dong Limin, et al. Effect of annealing temperature on microstructure and tensile properties of Ti662 alloy[J]. Journal of Shenyang University(Natural Science), 2020, 32(2): 99-102.
[8] 陈睿博, 朱宝辉, 赵洪章, 等. Ti-662钛合金热处理工艺[J]. 金属热处理, 2013, 38(3): 97-99.
Chen Ruibo, Zhu Baohui, Zhao Hongzhang, et al. Heat treatment process of Ti-662 titanium alloy[J]. Heat Treatment of Metals, 2013, 38(3): 97-99.
[9] 翟欣姣, 张明玉, 宋一新, 等. 固溶温度对TC21钛合金微观组织与力学性能的影响[J]. 特种铸造及有色合金, 2024, 44(11): 1554-1558.
Zhai Xinjiao, Zhang Mingyu, Song Yixin, et al. Effects of solution temperature on microstructure and mechanical properties of TC21 titanium alloy[J]. Special Casting and Nonferrous Alloys, 2024, 44(11): 1554-1558.
[10] 徐 浩, 孙前江, 文 超, 等. 固溶时效对TC21钛合金准β锻后组织性能的影响[J]. 稀有金属材料与工程, 2024, 53(1): 178-187.
Xu Hao, Sun Qianjiang, Wen Chao, et al. Effect of solution aging treatment on microstructure properties of TC21 titanium alloy after quasi-β forging[J]. Rare Metal Materials and Engineering, 2024, 53(1): 178-187.
[11] Falodun O E, Obadele B A, Oke S R, et al. Influence of spark plasma sintering on microstructure and wear behaviour of Ti-6Al-4V reinforced with nanosized TiN[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(1): 47-54.
[12] Saito Y. Hysteresis curve of X-Ray diffraction peak intensity in lead zirconate titanate ceramics[J]. Japanese Journal of Applied Physics, 1997, 36(9): 5963-5969.
[13] Öztürk H, Noyan C I. Expected values and variances of Bragg peak intensities measured in a nanocrystalline powder diffraction experiment[J]. Journal of Applied Crystallography, 2017, 50(5): 1307-1322.
[14] Lin X, Liu X, Huang H. Study on high temperature tensile constitutive behavior and deformation mechanism of Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy[J]. Materials Characterization, 2024, 218: 114594.
[15] Hang W, Changsheng T, Juan Z, et al. Effect of creep stress on the high-temperature tensile stability of TC11 titanium alloy[J]. Journal of Materials Science, 2023, 58(12): 5503-5515.
[16] Casati R, Boari G, Rizzi A, et al. Effect of annealing temperature on microstructure and high-temperature tensile behaviour of Ti-6242S alloy produced by laser powder bed fusion[J]. European Journal of Materials, 2021, 1(1): 72-83.
[17] Hafenecker J, Rothfelder R, Schmidt M, et al. Stretch forming of Ti-6Al-4V hybrid parts at elevated temperatures[J]. Key Engineering Materials, 2021, 883: 135-142.
[18] 董书琳, 曲迎东, 陈瑞润, 等. Ti-44Al-6Nb-2Fe合金低温超塑性及高温拉伸组织演化[J]. 材料导报, 2024, 38(1): 175-180.
Dong Shulin, Qu Yingdong, Chen Ruirun, et al. Low-temperature superplasticity and high-temperature tensile microstructure evolution of Ti-44A1-6Nb-2Fe alloy[J]. Materials Reports, 2024, 38(1): 175-180. |