[1] Ueda M, Matsuda K. Effects of carbon content and hardness on rolling contact fatigue resistance in heavily loaded pearlitic rail steels[J]. Wear, 2020, 444: 203120. [2] Kumar A, Dutta A, Makineni S K, et al. In-situ observation of strain partitioning and damage development in continuously cooled carbide-free bainitic steels using micro digital image correlation[J]. Materials Science and Engineering A, 2019, 757: 107-116. [3] Sourmail T, Caballero F G, Garcia-Mateo C, et al. Evaluation of potential of high Si high C steel nanostructured bainite for wear and fatigue applications[J]. Materials Science and Technology, 2013, 29: 1166-1173. [4] Clayton P, Devanathan R. Rolling/sliding wear behavior of a chromium-molybdenum rail steel in pearlitic and bainitic conditions[J]. Wear, 1992, 156: 121-131. [5] Jin N, Clayton P. Effect of microstructure on rolling/sliding wear of low carbon bainitic steels[J]. Wear, 1997, 202: 202-207. [6] Fan Y, Gui X, Liu M, et al. Effect of microstructure on wear and rolling contact fatigue behaviors of bainitic/martensitic rail steels[J]. Wear, 2022, 508-509: 204474. [7] Vandoorne R, Grabe P J, Heymann G. Soil suction and temperature measurements in a heavy haul railway formation[J]. Transportation Geotechnics, 2021, 31: 100675. [8] Zhao X, Yang J, An B, et al. Determination of dynamic amplification factors for heavy haul railways[J]. Proceedings of the Institution of Mechanical Engineers F, 2018, 232: 514-528. [9] 谭谆礼, 高 博, 高古辉, 等. 国内外贝氏体钢轨的研发现状[J]. 金属热处理, 2018, 43(4): 10-18. Tan Zhunli, Gao Bo, Gao Guhui, et al. Current development situation of bainitic rails at home and abroad[J]. Heat Treatment of Metals, 2018, 43(4): 10-18. [10] Clayton P, Jin N. Unlubricated sliding and rolling/sliding wear behavior of continuously cooled, low/medium carbon bainitic steels[J]. Wear, 1996, 200: 74-82. [11] Torkamani H, Raygan S, Mateo C G, et al. The influence of La and Ce addition on inclusion modification in cast niobium microalloyed steels[J]. Metals, 2017, 7(9): 377. [12] 计春娇, 岑耀东, 张 良, 等. 轧后不同冷却方式下U76CrRE重轨钢的摩擦磨损性能[J]. 金属热处理, 2023, 48(3): 203-208. Ji Chunjiao, Cen Yaodong, Zhang Liang, et al. Friction and wear performance of U76CrRE heavy rail steel under different post-rolling cooling modes[J]. Heat Treatment of Metals, 2023, 48(3): 203-208. [13] 田亚强, 姚 硕, 张明山, 等. 贝氏体等温温度对两相区轧制舰船用钢组织性能的影响[J]. 金属热处理, 2024, 49(11): 167-171. Tian Yaqiang, Yao Shuo, Zhang Mingshan, et al. Effect of isothermal bainite temperature on microstructure and properities of ship steel after intercritical rolling[J]. Heat Treatment of Metals, 2024, 49(11): 167-171. [14] 乔建勇, 文 超, 宋 倩, 等. G23Cr2Ni2Si1Mo钢制表层纳米贝氏体渗碳齿轮组织及性能[J]. 轨道交通材料, 2024, 3(3): 23-27. Qiao Jianyong, Wen Chao, Song Qian, et al. Microstructure and properties of carburized G23Cr2Ni2Si1Mo gear with nano-bainite surface[J]. Materials for Rail Transportation System, 2024, 3(3): 23-27. [15] 徐国轩, 池 强, 包文涛, 等. 超低碳贝氏体钢弯管热处理工艺优化研究[J]. 石油管材与仪器, 2024, 10(3): 71-77. Xu Guoxuan, Chi Qiang, Bao Wentao, et al. Optimization of heat treatment process for ultra low carbon bainitic steel bends[J]. Petroleum Tubular Goods and Instruments, 2024, 10(3): 71-77. [16] 张 衡, 张 迪, 刘馨宇, 等. 锻造及热处理工艺对耐磨钢组织及耐磨性能的影响[J]. 金属热处理, 2022, 47(7): 138-143. Zhang Heng, Zhang Di, Liu Xinyu, et al. Effect of forging and heat treatment on microstructure and wear resistance of wear-resistant steel[J]. Heat Treatment of Metals, 2022, 47(7): 138-143. [17] 陆冠华, 甘春雷, 刘 辉, 等. 高强高导Cu-Cr-Zr-Mg-Ce合金热处理前后组织性能变化[J]. 材料研究与应用, 2017, 11(2): 62-66. Lu Guanhua, Gan Chunlei, Liu Hui, et al. The variation in microstructures and properties of high strength and high electrical conductivity Cu-Cr-Zr-Mg-Ce alloy before and after heat treatment[J]. Materials Research and Application, 2017, 11(2): 62-66. |