金属热处理 ›› 2025, Vol. 50 ›› Issue (10): 153-159.DOI: 10.13251/j.issn.0254-6051.2025.10.024

• 工艺研究 • 上一篇    下一篇

淬火回火处理对Mn-Cr-Mo系贝氏体钢组织和耐磨性的影响

李凡1, 王晓东1,2,3, 岑耀东1,2,3, 王东梅1,2,3, 宋建周1, 王帆1, 包喜荣1,2,3   

  1. 1.内蒙古科技大学 材料科学与工程学院, 内蒙古 包头 014010;
    2.内蒙古自治区新金属材料重点实验室, 内蒙古 包头 014010;
    3.轻稀土资源绿色提取与高效利用教育部重点实验室, 内蒙古 包头 014010
  • 收稿日期:2025-05-09 修回日期:2025-08-21 出版日期:2025-10-25 发布日期:2025-11-04
  • 通讯作者: 包喜荣,教授,博士,E-mail: bxrwty@126.com
  • 作者简介:李 凡(2000—),男,硕士研究生,主要研究方向为贝氏体钢轨的耐磨性和疲劳寿命,E-mail: lipiaoliang0424@126.com。
  • 基金资助:
    国家自然科学基金(52164046);内蒙古自治区自然科学基金(2024LHMS05014);内蒙古科技大学基本科研业务费专项(2023QNJS031,2023QNJS032)

Effect of quenching and tempering on microstructure and wear resistance of Mn-Cr-Mo bainite steel

Li Fan1, Wang Xiaodong1,2,3, Cen Yaodong1,2,3, Wang Dongmei1,2,3, Song Jianzhou1, Wang Fan1, Bao Xirong1,2,3   

  1. 1. School of Materials Science and Engineering, Inner Mongolia University of Science & Technology, Baotou Inner Mongolia 014010, China;
    2. Inner Mongolia Key Laboratory of New Metal Material, Baotou Inner Mongolia 014010, China;
    3. Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Baotou Inner Mongolia 014010, China
  • Received:2025-05-09 Revised:2025-08-21 Online:2025-10-25 Published:2025-11-04

摘要: 以新开发的Mn-Cr-Mo系贝氏体钢为研究对象,对其进行淬火和不同温度(300、340和380 ℃)的回火处理,结合滑动磨损试验,系统研究了淬火态及不同温度回火态试验钢的组织及摩擦磨损性能。结果表明,淬火态组织为板条贝氏体和尺寸较大的M/A岛,回火态组织均为板条贝氏体和尺寸较小的M/A岛。340 ℃回火态试样表现出最佳的耐磨性和摩擦稳定性,其磨损量最小,摩擦因数波动幅度最低,磨损机制以氧化磨损为主,裂纹萌生与扩展受到显著抑制;300 ℃回火态试样表现出次优性能,主要以疲劳磨损为主,贝氏体板条的细化提高了韧性,但裂纹扩展阻碍效果稍弱;淬火态试样由于硬脆组织导致裂纹易于萌生和扩展,磨损机制以疲劳磨损为主,表现为较高的磨损量和摩擦因数;380 ℃回火态试样因组织软化,磨损机制以黏着磨损为主,裂纹贯通性显著,耐磨性能最差。最佳回火温度为340 ℃,该温度回火后板条贝氏体显著细化,M/A岛均匀分布,有效平衡了材料的硬度与韧性,显现出最优的耐磨性和抗裂性能。

关键词: 贝氏体钢, 淬火, 回火, 耐磨性, 磨损机制, 显微组织

Abstract: Microstructure and friction-wear properties of a newly developed Mn-Cr-Mo series bainitic steel subjected to quenching and tempering at different temperatures (300, 340 and 380 ℃), combined with sliding wear tests, were systematically studied. The results show that the microstructure in quenched state consists of lath bainite and relatively large M/A islands, while the microstructure in tempered states all consists of lath bainite and smaller M/A islands. The specimen tempered at 340 ℃ exhibits the best wear resistance and frictional stability, with the smallest wear loss and the lowest fluctuation range of friction coefficient. The wear mechanism is dominated by oxidative wear, and the initiation and propagation of cracks are significantly inhibited. The specimen tempered at 300 ℃ shows suboptimal performance, mainly characterized by fatigue wear. The refinement of bainite laths enhances toughness, but the effect of hindering crack propagation is slightly weaker. For the quenched specimen, due to hard and brittle structure, cracks are prone to initiation and propagation, the wear mechanism is mainly fatigue wear, resulting in relatively high wear loss and friction coefficient. The specimen tempered at 380 ℃, due to structural softening, has a wear mechanism dominated by adhesive wear, with significant crack connectivity, thus showing the worst wear resistance. The optimal tempering temperature is 340 ℃. After tempering at this temperature, the lath bainite is significantly refined and the M/A islands are uniformly distributed, which effectively balances the hardness and toughness of the material, thus exhibiting the best wear resistance and crack resistance.

Key words: bainitic steel, quenching, tempering, wear resistance, wear mechanism, microstructure

中图分类号: