[1] 白 鹤, 王伯健. 马氏体不锈钢成分、工艺和耐蚀性的进展[J]. 特殊钢, 2009, 30(2): 30-33. Bai He, Wang Bojian. Progress in chemical composition, process and corrosion resistance of martensite stainless steel[J]. Special Steel, 2009, 30(2): 30-33. [2] 郝宪朝, 高 明, 张 龙, 等. 退火态12Cr13不锈钢显微组织及其对冲击韧性的影响[J]. 金属学报, 2011, 47(7): 912-916. Hao Xianchao, Gao Ming, Zhang Long, et al. Microstructure of annealed 12Cr13 stainless steel and its effect on impact toughness[J]. Acta Metallurgica Sinica, 2011, 47 (7): 912-916. [3] 李 楠, 叶芳霞, 钟黎阳. 2Cr13不锈钢表面固相渗碳后的组织与性能[J]. 材料保护, 2015, 48(3): 61-63, 9. Li Nan, Ye Fangxia, Zhong Liyang. Microstructure as well as wear resistance and corrosion resistance of solid carburized coating on 2Cr13 stainless steel[J]. Materials Protection, 2015, 48(3): 61-63, 9. [4] 徐 昂, 刘瑞良. 马氏体不锈钢表面低温渗碳层腐蚀行为研究[J]. 热处理技术与装备, 2015, 36(5): 31-36. Xu Ang, Liu Ruiliang. Study on corrosion behavior of low temperature carburized layer on martensitic stainless steel surface[J]. Heat Treatment Technology and Equipment, 2015, 36(5): 31-36. [5] 韩永珍, 李 俏, 徐跃明, 等. 真空低压渗碳技术研究进展[J]. 金属热处理, 2018, 43(10): 253-261. Han Yongzhen, Li Qiao, Xu Yueming, et al. Research progress of vacuum low pressure carburizing technology[J]. Heat Treatment of Metals, 2018, 43(10): 253-261. [6] 张建国, 丛培武. 真空渗碳技术国内外概况及发展[J]. 金属热处理, 2003, 28(10): 52-55. Zhang Jianguo, Cong Peiwu. Development of vacuum carburizing technology at home and abroad[J]. Heat Treatment of Metals, 2003, 28(10): 52-55. [7] 张文汉. V-Nb微合金化齿轮钢及其热处理工艺和力学性能的研究[D]. 武汉: 武汉科技大学, 2007. Zhang Wenhan. A study on fabrication, heat-treatments and mechanical properties of V-Nb microalloyed gear steel[D]. Wuhan: Wuhan University of Science and Technology, 2007. [8] 王 会, 王昊杰, 贾 涛, 等. 航空轴承钢的真空低压渗碳工艺[J]. 金属热处理, 2020, 45(1): 1-5. Wang Hui, Wang Haojie, Jia Tao, et al. Low pressure carburizing process for aviation bearing steel[J]. Heat Treatment of Metals, 2020, 45(1): 1-5. [9] 刘 松. 金相法测定1Cr11Ni2W2MoV钢渗碳层深度的条件选择[J]. 理化检验(物理分册), 2007(8): 404-406. Liu Song. The depth measurement of carburized layer of 1Cr11Ni2W2MoV steel with metallographic method[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2007(8): 404-406. [10] 刘 松. 1Cr11Ni2W2MoV钢渗碳层中孪晶组织形成原因及对性能的影响[J]. 金属热处理, 2011, 36(2): 33-37. Liu Song. Twin forming reason in carburized layer and its effect on mechanical properties of 1Cr11Ni2W2MoV steel[J]. Heat Treatment of Metals, 2011, 36(2): 33-37. [11] Lu S Y, Yao K F, Chen Y B, et al. Effects of austenitizing temperature on the microstructure and electrochemical behavior of a martensitic stainless steel[J]. Journal of Applied Electrochemistry, 2015, 45: 375-383. [12] Wang B, He Y, Liu Y, et al. Mechanism of the microstructural evolution of 18Cr2Ni4WA steel during vacuum low-pressure carburizing heat treatment and its effect on case hardness[J]. Materials, 2020, 13(10): 2352. [13] Yue T, Wahab M A. Finite element analysis of fretting wear under variable coefficient of friction and different contact regimes[J]. Tribology International, 2017, 107: 274-282. [14] 马 彪, 傅丽华, 上官宝, 等. GCr15及G20CrNi2Mo轴承钢材料微观组织和摩擦磨损性能研究[J]. 材料导报, 2021, 35(16): 16120-16125. Ma Biao, Fu Lihua, Shangguan Bao, et al. Research on microstructure and friction wear performance of GCr15 and G20CrNi2Mo bearing steels[J]. Materials Reports, 2021, 35(16): 16120-16125. [15] 李 波, 黄 杰, 杨 韬, 等. 20Cr13不锈钢高温微动摩擦磨损特性研究[J]. 摩擦学学报, 2024, 44(4): 494-508. Li Bo, Huang Jie, Yang Tao, et al. Analysis on high temperature fretting wear behaviour of 20Cr13 stainless steel[J]. Chinese Journal of Tribology, 2024, 44(4): 494-508. |