金属热处理 ›› 2025, Vol. 50 ›› Issue (10): 119-125.DOI: 10.13251/j.issn.0254-6051.2025.10.019

• 工艺研究 • 上一篇    下一篇

Ce及变形温度和冷却速度对油井管用30MnNbRE钢组织转变的影响

郭世民1,2,3, 许占海4, 汤雪娇1,2,3, 王晓东1,2,3, 包喜荣1,2,3   

  1. 1.内蒙古科技大学 材料科学与工程学院, 内蒙古 包头 014010;
    2.内蒙古自治区新金属材料重点实验室, 内蒙古 包头 014010;
    3.轻稀土资源绿色提取与高效利用教育部重点实验室, 内蒙古 包头 014010;
    4.内蒙古包钢钢管有限公司, 内蒙古 包头 014010
  • 收稿日期:2025-04-25 修回日期:2025-08-12 出版日期:2025-10-25 发布日期:2025-11-04
  • 通讯作者: 包喜荣,教授,硕士生导师,E-mail: bxrwty@126.com
  • 作者简介:郭世民(1997—),女,硕士研究生,主要研究方向为无缝钢管加工过程组织性能控制,E-mail: guominxx@163.com。
  • 基金资助:
    国家自然科学基金(52164046);内蒙古自治区自然科学基金(2024LHMS05014);金属成形技术与重型全国重点实验室开放课题(S2208100.W05);内蒙古科技大学基本科研业务费专项(2023QNJS031)

Effect of Ce and deformation temperature and cooling rate on microstructure transformation of 30MnNbRE steel for oil well pipe

Guo Shimin1,2,3, Xu Zhanhai4, Tang Xuejiao1,2,3, Wang Xiaodong1,2,3, Bao Xirong1,2,3   

  1. 1. School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou Inner Mongolia 014010, China;
    2. Inner Mongolia Key Laboratory of New Metal Material, Baotou Inner Mongolia 014010, China;
    3. Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources, Ministry of Education, Baotou Inner Mongolia 014010, China;
    4. Inner Mongolia Baotou Steel Tube Co., Ltd., Baotou Inner Mongolia 014010, China
  • Received:2025-04-25 Revised:2025-08-12 Online:2025-10-25 Published:2025-11-04

摘要: 通过Gleeble-3500热模拟试验机研究了油井管用30MnNbRE钢添加不同稀土Ce含量、不同变形温度和空冷、快冷、超快冷3种冷却速度下的马氏体演变规律;采用扫描电镜和硬度计等手段对冷却过程中的相变组织、NbC相析出行为和显微硬度进行分析。结果表明,在1 ℃/s连续冷却条件下,添加0.011%Ce,NbC相可从64.89 nm细化至54.23 nm。0.011%Ce含量的试验钢,950 ℃变形后在45 ℃/s超快冷却条件下,硬度提高至496.7 HV5。因此30MnNbRE油井管钢成分设计与工艺优化可设计为:添加0.011%Ce,选择950 ℃为定(减)径变形温度,然后以大于45 ℃/s的冷却速度冷却至室温。该工艺方法可获得细小板条马氏体为主的微观组织,显著增强30MnNbRE钢的硬度。

关键词: 30MnNbRE钢, 油井管, 稀土, TMCP, 超快冷, 马氏体相变

Abstract: Martensite evolution law of 30MnNbRE oil well pipe steel was studied by means of Gleeble-3500 thermal simulation tests under different conditions, including varying Ce contents, different deformation temperatures, and three cooling rates (air cooling, fast cooling, and ultra-fast cooling). The phase transformation microstructure, NbC precipitation behavior, and microhardness of the steel during the controlled cooling process were analyzed by means of scanning electron microscopy (SEM) and hardness tester. The results indicate that under the condition of continuous cooling at 1 ℃/s, by adding 0.011%Ce, the size of NbC phase can be refined from 64.89 nm to 54.23 nm. For the steel with Ce content of 0.011%, after deformation at 950 ℃ and subsequent ultra-fast cooling at 45 ℃/s, the hardness is increased to 496.7 HV5. Therefore, the composition design and process optimization for the 30MnNbRE oil well pipe steel can be formulated as follows: add 0.011%Ce, select 950 ℃ as the sizing (reducing) deformation temperature, and then cool to room temperature at a cooling rate higher than 45 ℃/s. This process method can obtain a microstructure dominated by fine lath martensite, significantly enhancing the hardness of the 30MnNbRE steel.

Key words: 30MnNbRE steel, oil well pipe, rare earth, TMCP, ultra-fast cooling, martensitic phase transformation

中图分类号: