[1]朱正兴, 刘秀波, 刘一帆, 等. 激光熔覆FeCoCrNiTi系高熵合金涂层的组织及高温摩擦学性能[J]. 材料工程, 2023, 51(3): 78-88. Zhu Zhengxing, Liu Xiubo, Liu Yifan, et al. Microstructure and high temperature tribological properties of laser cladding FeCoCrNi-based high entropy alloy coating[J]. Journal of Materials Engineering, 2023, 51(3): 78-88. [2]Shun T, Hung C, Lee F. The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700 ℃[J]. Journal of Alloys and Compounds, 2010, 495(1): 55-58. [3]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [4]Cantor B, Chang T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering A, 2004, 37(5): 213-218. [5]Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 34(5): 1153. [6]Wang F, Zhang Y, Chen G. Atomic packing efficiency and phase transition in a high entropy alloy[J]. Journal of Alloys and Compounds, 2009, 478(1): 321-324. [7]蒋廷普, 孙荣禄, 牛 伟, 等. SiC添加量对CoCrFeNi高熵合金涂层组织与性能的影响[J]. 金属热处理, 2024, 49(6): 198-205. Jiang Tingpu, Sun Ronglu, Niu Wei, et al. Effect of SiC addition on microstructure and properties of CoCrFeNi high entropy alloy coating[J]. Heat Treatment of Metals, 2024, 49(6): 198-205. [8]Li A, Zhang X. Thermodynamic analysis of the simple microstructure of AlCrFeNiCu high-entropy alloy with multi-principal elements[J]. Acta Metallurgica Sinica, 2009, 22(3): 219-224. [9]Eimann Nadine, Mühle Uwe, Gaitzsch Uwe, et al. Precipitation hardening of high entropy alloy CoCrFeMnNi containing titanium[J]. Journal of Alloys and Compounds, 2020, 157: 610. [10]Wang S, Chen Z, Zhang P, et al. Influence of Al content on high temperature oxidation behavior of AlxCoCrFeNiTi0.5 high entropy alloys[J]. Vacuum, 2019, 163: 263-268. [11]Cheng P, Zhao Y, Xu X, et al. Microstructural evolution and mechanical properties of Al0.3CoCrFeNiSix high-entropy alloys containing coherent nanometer-scaled precipitates[J]. Materials Science and Engineering A, 2020, 772: 138681. [12]Cao B X, Wang C, Liu C T, et al. Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures[J]. Scripta Materialia, 2020, 187: 250-255. [13]Fu Z, Chen W, Xiao H, et al. Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique[J]. Materials and Design, 2013, 44: 535-539. [14]Sun Z L, Zhang M Y, Wang G Q, et al. Wear and corrosion resistance analysis of FeCoNiTiAlx high entropy alloy coatings prepared by laser cladding[J]. Coatings, 2021, 11(2): 155. [15]Li X, Cao Z Y, Zhao L, et al. Microstructure texture and mechanical properties of a hot rolled Mg-6.5Gd-1.3Nd-0.7Y-0.3Zn alloy[J]. Materials and Design, 2012, 7: 76-81. [16]Tu B, Wang H, Wang Y, et al. Optimizing Ti-Zr-Cr-Mn-Ni-V alloys for hybrid hydrogen storage tank of fuel cell bicycle[J]. Hydrogen Energy, 2022, 47: 1495-1496. [17]Shang C Y, Axinte E, Sun J, et al. CoCrFeNiW1-xMox high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering[J]. Materials and Design, 2017, 117: 193-202. [18]张宏亮, 王明欣, 张京兵, 等. TiC含量对AlCoCrFeNi高熵合金涂层组织与耐磨性的影响[J]. 金属热处理, 2024, 49(9): 275-279. Zhang Hongliang, Wang Mingxin, Zhang Jingbing, et al. Effect of TiC content on microstructure and wear resistance of AlCoCrFeNi high-entropy alloy clad layer[J]. Heat Treatment of Metals, 2024, 49(9): 275-279. [19]Guo Y X, Shang X J, Liu Q B. Microstructure and properties of in-situ TiN reinforced laser cladding CoCr2FeNiTi high-entropy alloy composite coatings[J]. Surface and Coatings Technology, 2018, 344: 353-358. |