金属热处理 ›› 2025, Vol. 50 ›› Issue (12): 266-275.DOI: 10.13251/j.issn.0254-6051.2025.12.041
严文超1, 李小兵1, 张翔1, 赵琦琦1, 张小立1, 郑传波1, 汪存龙2, 庄栋栋2
收稿日期:2025-08-02
修回日期:2025-11-05
发布日期:2026-01-06
通讯作者:
李小兵,副教授,博士,E-mail: lxbing2009@126.com
作者简介:严文超(2001—),男,硕士研究生,主要研究方向为塑性成形与新材料的制备技术,E-mail: 1783298484@qq.com。
基金资助:Yan Wenchao1, Li Xiaobing1, Zhang Xiang1, Zhao Qiqi1, Zhang Xiaoli1, Zheng Chuanbo1, Wang Cunlong2, Zhuang Dongdong2
Received:2025-08-02
Revised:2025-11-05
Published:2026-01-06
摘要: 高熵合金可通过粉末冶金、真空熔炼、激光熔覆等多种方法制备得到,但需要采用塑性成形加工来改善成形质量和组织性能。综述了高熵合金的材料特性、制备方法及工程应用,详细介绍了传统塑性成形方法和新型塑性成形技术在制备高熵合金中的应用,分析了高熵合金的塑性变形机理和组织演变规律,提出了优化高熵合金性能的加工路径,阐述了高熵合金塑性成形技术存在的问题和挑战。
中图分类号:
严文超, 李小兵, 张翔, 赵琦琦, 张小立, 郑传波, 汪存龙, 庄栋栋. 塑性成形在高熵合金制备中的研究进展[J]. 金属热处理, 2025, 50(12): 266-275.
Yan Wenchao, Li Xiaobing, Zhang Xiang, Zhao Qiqi, Zhang Xiaoli, Zheng Chuanbo, Wang Cunlong, Zhuang Dongdong. Research progress of plastic forming in preparation of high entropy alloys[J]. Heat Treatment of Metals, 2025, 50(12): 266-275.
| [1]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2]Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Progress in Materials Science, 2014, 61: 1-93. [3]盛 剑, 李大赵, 闫志杰, 等. FeMnCoCrNi高熵合金高温力学性能及变形机制研究现状[J]. 金属热处理, 2024, 49(10): 211-220. Sheng Jian, Li Dazhao, Yan Zhijie, et al. Research status of high-temperature mechanical properties and deformation mechanism of FeMnCoCrNi high-entropy alloy [J]. Heat Treatment of Metals, 2024, 49(10): 211-220. [4]Hsu W L, Tsai C W, Yeh A C, et al. Clarifying the four core effects of high-entropy materials [J]. Nature Reviews Chemistry, 2024, 8(6): 471-485. [5]Yeh J W. Recent progress in high-entropy alloys [J]. Annales De Chimie-Science Des Materiaux, 2006, 31: 633-635. [6]王 虎, 王智慧. 等离子熔覆法制AlxCoCrFeNi高熵合金微观组织与性能研究[J]. 材料导报, 2018, 32(4): 589-597. Wang Hu, Wang Zhihui. Microstructure and properties of AlxCoCrFeNi high-entropy alloy prepared by plasma cladding [J]. Materials Review, 2018, 32(4): 589-597. [7]Wan Y X, Mo J Y, Wang X, et al. Mechanical properties and phase stability of WTaMoNbTi refractory high-entropy alloy at elevated temperatures [J]. Acta Metallurgica Sinica (English Letters), 2021, 34: 1585-1590. [8]鲁一荻, 张骁勇, 侯 硕, 等. 高熵合金的发展及工业应用展望[J]. 稀有金属材料与工程, 2021, 50(1): 333-341. Lu Yidi, Zhang Xiaoyong, Hou Shuo, et al. Perspective on industrial applications and research progress of high-entropy alloys [J]. Rare Metal Materials and Engineering, 2021, 50(1): 333-341. [9]秦 琴, 郑晶睿, 刘晋江, 等. 高熵合金的制备方法及研究现状[J]. 热加工工艺, 2024, 53(14): 6-10, 15. Qin Qin, Zheng Jingrui, Liu Jinjiang, et al. Preparation methods and research status of high-entropy alloys [J]. Hot Working Technology, 2024, 53(14): 6-10, 15. [10]张 松, 张春华, 吴维弢, 等. Ti6Al4V表面激光熔覆原位自TiC颗粒增强钛基复合材料及摩擦磨损性能[J]. 金属学报, 2001, 37(3): 315-320. Zhang Song, Zhang Chunhua, Wu Weitao, et al. An in situ formed TiC particles reinforcement composite coating induced by laser melting on surface of alloy Ti6Al4V and its wearing performance [J]. Acta Metallurgica Sinica, 2001, 37(3): 315-320. [11]Zhuo L C, Sun J C, Chen B Q, et al. Microstructure and mechanical performances of novel multi-phase refractory high entropy alloys in Ti-Zr-V-Mo fabricated by vacuum arc melting [J]. Vacuum, 2023, 217: 112544. [12]Wang Y P, Li B S, Ren M X, et al. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy [J]. Materials Science and Engineering A, 2008, 491(1/2): 154-158. [13]范小康, 吴 兵, 赵翠娇, 等. 高熵合金制备技术研究新进展[J]. 河南科学, 2024, 42(11): 1561-1569. Fan Xiaokang, Wu Bing, Zhao Cuijiao, et al. Research progress on preparation technology of high-entropy alloy [J]. Henan Science, 2024, 42 (11): 1561-1569. [14]Sun X, Zhu H, Li J, et al. Influence of aluminum content on the microstructure and properties of the in-situ TiC reinforced AlxFeCoNiCu high entropy alloy matrix composites [J]. Materials Science and Engineering A, 2019, 743: 540-545. [15]Prusa F, Cabibbo M, Senková A, et al. High-strength ultrafine-grained CoCrFeNiNb high-entropy alloy prepared by mechanical alloying: Properties and strengthening mechanism [J]. Journal of Alloys and Compounds, 2020, 835: 155308. [16]Shivam V, Basu J, Pandey V K, et al. Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy [J]. Advanced Powder Technology, 2018, 29(9): 2221-2230. [17]Yan X H, Li J S, Zhang W R, et al. A brief review of high-entropy films [J]. Materials Chemistry and Physics, 2018, 210: 12-19. [18]Sheng W, Yang X, Wang C, et al. Nano-crystallization of high-entropy amorphous NbTiAlSiWxNy films prepared by magnetron sputtering [J]. Entropy, 2016, 18(6): 226. [19]Bachani S K, Wang C J, Lou B S, et al. Microstructural characterization mechanical property and corrosion behavior of VNbMoTaWAl refractory high entropy alloy coatings: Effect of Al content [J]. Surface and Coatings Technology, 2020, 403: 126351. [20]Alvi S, Jarzabek D M, Kohan M G, et al. Synthesis and mechanical characterization of a CuMoTaWV high-entropyfilm by magnetron sputtering [J]. ACS Applied Materials and Interfaces, 2020, 12(18): 21070-21079. [21]徐洪洋, 卢金斌, 彭 漩, 等. 激光熔覆CoCrCu0.4FeNi高熵合金涂层的微观组织和相稳定性分析[J]. 粉末冶金技术, 2024, 42(3): 320-330. Xu Hongyang, Lu Jinbin, Peng Xuan, et al. Microstructure and phase stability analysis of laser cladding CoCrCu0.4FeNi high entropy alloy coatings [J]. Powder Metallurgy Technology, 2024, 42(3): 320-330. [22]Moghaddam A O, Samodurova M N, Pashkeev K, et al. A novel intermediate temperature self-lubricating CoCrCu1-xFeNix high entropy alloy fabricated by direct laser cladding [J]. Tribology International, 2021, 156: 106857. [23]杜新宇, 翟长生, 荣海松, 等. 激光熔覆FeCoCrNiMoBSi高熵合金涂层的电化学腐蚀行为[J]. 金属热处理, 2024, 49(8): 261-267. Du Xinyu, Zhai Changsheng, Rong Haisong, et al. Electrochemical corrosion behavior of FeCoCrNiMoBSi high-entropy alloy coating prepared by laser cladding [J]. Heat Treatment of Metals, 2024, 49(8): 261-267. [24]Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Materialia, 2013, 61: 5743-5755. [25]Laplanche G, Kostka A, Horst O M, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi highentropy alloy [J]. Acta Materialia, 2016, 118: 152-163. [26]He J Y, Zhu C, Zhou D Q, et al. Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures [J]. Intermetallics, 2014, 55: 9-14. [27]Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. Journal of Alloys and Compounds, 2011, 509: 6043. [28]Rogal Ł, Czerwinski F, Jochym P T, et al. Microstructure and mechanical properties of the novel Hf25Sc25Ti25Zr25 equiatomic alloy with hexagonal solid solutions [J]. Materials and Design, 2016, 92: 8-17. [29]华绍春, 丁 华, 万元元, 等. 轧制处理对AlCrFe2Ni2高熵合金组织与力学性能的影响[J]. 精密成形工程, 2023, 15(6): 155-162. Hua Shaochun, Ding Hua, Wan Yuanyuan, et al. Effect of rolling process on micro-structure and mechanical strength of AlCrFe2Ni2 high entropy alloy [J]. Journal of Netshape Forming Engineering, 2023, 15(6): 155-162. [30]Hou J, Zhang M, Ma S, et al. Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling [J]. Materials Science and Engineering A, 2017, 707: 593-601. [31]Gheysarian A, Rezaeian A, Toroghinejad M R, et al. Microstructural studies of CuCrFeNi2Mn0.5 high entropy alloy during cold rolling [J]. Journal of Alloys and Compounds, 2024, 987: 174197. [32]康 亮, 梁霄鹏, 李慧中, 等. 轧制及退火对FeCoCrNiN0.07高熵合金组织及力学性能的影响[J]. 热加工工艺, 2024, 53(17): 94-97. Kang Liang, Liang Xiaopeng, Li Huizhong, et al. Effects of rolling and annealing on microstructure and mechanical properties of FeCoCrNiN0.07 high-entropy alloy [J]. Hot Working Technology, 2024, 53(17): 94-97. [33]李正龙, 庞景宇, 汤广全, 等. 变形热处理对Ti45Zr20Nb15V(10-x)Al10Mox难熔高熵合金组织与性能的影响[J]. 金属热处理, 2024, 49(7): 47-53. Li Zhenglong, Pang Jingyu, Tang Guangquan, et al. Effect of deformation heat treatment on microstructure and properties of Ti45Zr20Nb15V(10-x)Al10Mox refractory high entropy alloy [J]. Heat Treatment of Metals, 2024, 49(7): 47-53. [34]Gu J, Ni S, Liu Y, et al. Regulating the strength and ductility of a cold rolled FeCrCoMnNi high-entropy alloy via annealing treatment [J]. Materials Science and Engineering A, 2019, 755: 289-294. [35]Ma X, Wei B, Feng X, et al. Effect of rolling process on deformation structure and mechanical properties of CoCrFeNiMo0.35 high entropy alloy [J]. Journal of Materials Research and Technology, 2024, 33: 8111-8120. [36]李 博, 张晓波. 轧制和热处理对共晶高熵合金AlCoCrFeNi2.1Re0.5的影响[J/OL]. 热加工工艺, 2024-05-17. https://doi.org/10.14158/j.cnki.1001-3814.20221259. Li Bo, Zhang Xiaobo. Effect of rolling and heat treatment on eutectic high entropy alloy AlCoCrFeNi2.1Re0.5[J/OL]. Hot Working Technology, 2024-05-17. https://doi.org/10.14158/j.cnki.1001-3814.20221259. [37]梅金娜, 姜凤阳, 卫 娜, 等. 轧制变形对高熵合金微观组织和力学性能的影响 [J]. 金属热处理, 2022, 47(3): 67-72. Mei Jinna, Jiang Fengyang, Wei Na, et al. Effect of rolling deformation on microstructure and mechanical properties of high-entropy alloy [J]. Heat Treatment of Metals, 2022, 47(3): 67-72. [38]高承兴. 矿山机械环境适应性分析及改进[J]. 模具制造, 2024, 24(8): 132-134. Gao Chengxing. Environmental adaptability analysis and improvement of mining machinery [J]. Die and Mould Manufacture, 2024, 24(8): 132-134. [39]Sourav A, Yebaji S, Thangaraju S. Structure-property relationships in hot forged AlxCoCrFeNi high entropy alloys [J]. Materials Science and Engineering A, 2020, 793: 139877. [40]Cao Y, Liu Y, Li Y, et al. Precipitation behavior and mechanical properties of a hot-worked TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. International Journal of Refractory Metals and Hard Materials, 2020, 86: 105132. [41]Sun J, Zhao W, Yan P, et al. High temperature tensile properties of as-cast and forged CrMnFeCoNi high entropy alloy [J]. Materials Science and Engineering A, 2022, 850: 143570. [42]李安敏, 王美华, 史君佐, 等. 锻造对FeMnCrCoNi高熵合金组织与性能的影响[J]. 锻压技术, 2019, 44(2): 173-181. Li Anmin, Wang Meihua, Shi Junzuo, et al. Influence of forging on microstructure and properties of high entropy alloy FeMnCrCoNi [J]. Forging and Stamping Technology, 2019, 44(2): 173-181. [43]莫其逢, 祝伟月. 锻造多组元合金CuxCoCrFeNi2-x组织与性能的研究[J]. 轻工科技, 2023, 39(4): 85-88. [44]Zhou J, Liao H, Chen H, et al. Effects of hot-forging and subsequent annealing on microstructure and mechanical behaviors of Fe35Ni35Cr20Mn10 high-entropy alloy [J]. Materials Characterization, 2021, 178: 111251. [45]Wang X F, Wang Z P, Bian Y L, et al. Improving ductility and strength of high-entropy alloy Fe50Mn30Co10Cr10 via multi-directional forging and annealing [J]. Materials Science and Engineering A, 2024, 915: 147258. [46]Kuznetsov A V, Shaysultanov D G, Stepanov N D. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions [J]. Materials Science and Engineering A, 2012, 533: 107-118. [47]Zhang Z, Xie Y H, Huo X Y, et al. Microstructure and mechanical properties of ultrafine grained CoCrFeNi and CoCrFeNiAl0.3 high entropy alloys reinforced with Cr2O3/Al2O3 nanoparticles [J]. Materials Science and Engineering A, 2021, 816: 141313. [48]Han J, Su B, Zhang A, et al. Forming and characterization of Al0.2MoNbTaTiW/MC refractory high-entropy alloy composite by spark plasma sintering and hot extrusion [J]. Materials Letters, 2021, 284: 128979. [49]Pu Z, Cai S L, Dai L H, et al. Effective strengthening and toughening in high entropy-alloy by combining extrusion machining and heat treatment [J]. Scripta Materialia, 2022, 213: 114630. [50]Gao Q, Liu P, Gong J, et al. Tailoring microstructures and mechanical properties of lightweight refractory Ti22Sc22Zr22Nb17V17 multi-phase high-entropy alloys by hot extrusion and annealing [J]. Materials Characterization, 2023, 202: 113025. [51]Huan C, He Y, Su Q, et al. Properties of AlFeNiCrCoTi0.5 high-entropy alloy particle-reinforced 6061Al composites prepared by extrusion [J]. Metals, 2022, 12(8): 1325. [52]方 园, 王快社, 王 文, 等. 搅拌摩擦加工Fe40Mn20Co20Cr15Si5高熵合金的疲劳行为[J]. 塑性工程学报, 2022, 29(12): 203-208. Fang Yuan, Wang Kuaishe, Wang Wen, et al. Fatigue behavior of Fe40Mn20Co20Cr15Si5 high entropy alloy prepared by friction stir processing [J]. Journal of Plasticity Engineering, 2022, 29(12): 203-208. [53]张宇烨, 韩 鹏, 王 文, 等. 水下搅拌摩擦加工CoCrFeNiMn高熵合金微观组织及力学性能[J]. 塑性工程学报, 2024, 31(2): 86-90. Zhang Yuye, Han Peng, Wang Wen, et al. Microstructure and mechanical properties of CoCrFeNiMn high-entropy alloy prepared by underwater friction stir processing [J]. Journal of Plasticity Engineering, 2024, 31(2): 86-90. [54]王 智, 王 文, 张志娟, 等. 水下搅拌摩擦加工制备CoCrFeNiMn/6061Al复合材料组织和性能研究[J]. 塑性工程学报, 2023, 30(2): 223-230. Wang Zhi, Wang Wen, Zhang Zhijuan, et al. Study on microstructure and properties of CoCrFeNiMn/6061Al composites prepared by underwater friction stir processing [J]. Journal of Plasticity Engineering, 2023, 30(2): 223-230. [55]Gao J, Wang X, Zhang S, et al. Producing of FeCoNiCrAl high-entropy alloy reinforced Al composites via friction stir processing technology [J]. The International Journal of Advanced Manufacturing Technology, 2020, 110: 569-580. [56]Wang T, Shukla S, Komarasamy M, et al. Towards heterogeneous AlxCoCrFeNi high entropy alloy via friction stir processing [J]. Materials Letters, 2019, 236: 472-475. [57]Zhou J, Liao H, Chen H, et al. Microstructure and strength of cold-drawn large strain Fe35Ni35Cr20Mn10 high-entropy alloy [J]. Journal of Alloys and Compounds, 2024, 1008: 176854. [58]Cho H S, Bae S J, Na Y S, et al. Influence of reduction ratio on the microstructural evolution andsubsequent mechanical properties of cold-drawn Co10Cr15Fe25Mn10Ni30V10 high entropy alloy wires [J]. Journal of Alloys and Compounds, 2020, 821: 153526. [59]张 冲, 李庆达, 郭建永, 等. 超声冲击对Al2FeCoNiCrW0.5高熵合金涂层摩擦磨损性能的影响[J]. 材料保护, 2025, 58(1): 82-88. Zhang Chong, Li Qingda, Guo Jianyong, et al. Effect of ultrasonic impact treatment on the friction and wear properties of Al2FeCoNiCrW0.5 high entropy alloy coatings [J]. Materials Protection, 2025, 58(1): 82-88. [60]殷浚彬, 梁忠伟, 刘朝阳, 等. 基于超声强化改性研磨时长的AlCoCrFeNi2.1共晶高熵合金组织和力学性能影响研究[J]. 机电工程技术, 2024, 53(7): 8-12, 17. Ying Junbin, Liang Zhongwei, Liu Zhaoyang, et al. Study on the influence of ultrasonic strengthening and modified grinding time on the structure and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy [J]. Mechanical and Electrical Engineering Technology, 2024, 53(7): 8-12, 17. [61]闫维亮, 朱 亮, 魏玉鹏, 等. FeCoCrNiAlx高熵合金的电爆合金化[J]. 稀有金属材料与工程, 2022, 51(4): 1525-1530. Yan Weiliang, Zhu Liang, Wei Yupeng, et al. Electric-explosive alloying of FeCoCrNiAlx high-entropy alloy [J]. Rare Metal Materials and Engineering, 2022, 51(4): 1525-1530. [62]Li R, Niu P, Yuan T, et al. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property [J]. Journal of Alloys and Compounds, 2018, 746: 125-134. [63]Gan G, Yang B, Zhang X, et al. Tuning the mechanical properties of powder bed fusion printed CoCrFeNiMn high-entropy alloys by annealing and hot isostatic pressing [J]. Journal of Alloys and Compounds, 2023, 946: 169376. |
| [1] | 刘斌华, 李可尔, 赵鹏程, 陈威. Ti55531钛合金热轧对α相析出行为及力学性能的影响[J]. 金属热处理, 2025, 50(9): 76-85. |
| [2] | 刘冉, 罗海光, 李颖, 林耔辰. FeCoCrNi涂层激光熔覆过程温度场与应力场模拟[J]. 金属热处理, 2025, 50(8): 254-263. |
| [3] | 孙小斌, 李杰, 曹炜鹏, 吴凯迪, 冯运莉. 间隙元素C对亚稳FeMnCoCrAl系高熵合金组织与力学性能的影响[J]. 金属热处理, 2025, 50(6): 6-11. |
| [4] | 刘朝辉, 曹炜鹏, 李杰, 冯运莉. C、B对退火AlFeMnCoCr系高熵合金组织及性能的影响[J]. 金属热处理, 2025, 50(4): 1-8. |
| [5] | 王镇华, 刘海洋, 王瑞, 高直, 唐丽娜, 王清. BCC/B2基难熔高熵合金的组织与性能研究进展[J]. 金属热处理, 2025, 50(4): 9-18. |
| [6] | 蒋赛男, 解芳, 翟长生, 张玺, 张欣. 激光功率对CrCoFeNiMoSi1.2B1.1高熵合金激光熔覆涂层微观组织及耐蚀性的影响[J]. 金属热处理, 2025, 50(4): 19-27. |
| [7] | 伽亮亮, 张金伟, 赵奔奔, 张曼. 球磨工艺和退火处理对机械合金化制备FeCrNiMo高熵合金粉末微观结构的影响[J]. 金属热处理, 2025, 50(4): 28-33. |
| [8] | 白莉, 刘蒙恩, 王方丽, 彭莉. 热处理对Fe35Mn35Ni10Cr10Al10高熵合金显微组织和硬度的影响[J]. 金属热处理, 2025, 50(4): 34-39. |
| [9] | 姜梦媛, 吴振楠, 吴成博, 徐旺, 李宁, 董福元. 退火温度对冷轧态CoCrFeNi高熵合金力学性能的影响[J]. 金属热处理, 2025, 50(2): 128-132. |
| [10] | 李明哲, 陈宝凤, 孙立壮, 张文良, 张伦, 刘俊杰. 滚珠丝杠感应淬火技术研究进展[J]. 金属热处理, 2025, 50(2): 172-180. |
| [11] | 蔡顺达, 辛利峰, 宋利伟, 阮国庆, 孙荣生, 钟莉莉. 奥氏体化温度对1500 MPa冷轧Q&P钢组织性能的影响[J]. 金属热处理, 2025, 50(2): 247-250. |
| [12] | 王庆田, 满蛟, 王俊成, 刘庚根, 杨斌. WC含量对AlCrFe2Ni2Mo0.9高熵合金涂层组织及耐磨性的影响[J]. 金属热处理, 2025, 50(2): 282-291. |
| [13] | 刘冉, 陈楚琦, 吴韬. V含量对激光熔覆FeCoCrNiTi基合金涂层组织与耐磨性的影响[J]. 金属热处理, 2025, 50(12): 290-296. |
| [14] | 王海威. 激光熔覆FeCrNiCo-TiC高熵合金复合涂层的组织与耐磨性[J]. 金属热处理, 2025, 50(11): 322-327. |
| [15] | 李怀博, 王子乐, 杨伟, 曾大新, 史秋月. H13钢表面激光定向能量沉积AlCoCrFeNi2.1高熵合金涂层的组织与性能[J]. 金属热处理, 2025, 50(10): 302-309. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 中国机械总院集团北京机电研究所有限公司 《金属热处理》编辑部
北京海淀区学清路18号 北京机电研究所有限公司内 邮政编码:100083 电话:010-62935465 82415083 E-mail:jsrcl@vip.sina.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn