[1]邹雷雷, 刘 青, 杜肖臣, 等. 基于非调质钢凝固特性的二次冷却控制[J]. 工程科学学报, 2022, 44(3): 357-366. Zou Leilei, Liu Qing, Du Xiaochen, et al. Secondary cooling control based on solidification characteristics of non-quenched and tempered steel[J]. Chinese Journal of Engineering, 2022, 44(3): 357-366. [2]刘运娜, 孙笠灿, 戴观文, 等. 冷却速率和Nb微合金化对25MnV非调质钢组织和硬度的影响[J]. 金属热处理, 2024, 49(8): 31-36. Liu Yunna, Sun Lican, Dai Guanwen, et al. Effects of cooling rate and Nb microalloying on microstructure and hardness of 25MnV non-quenched and tempered steel[J]. Heat Treatment of Metals, 2024, 49(8): 31-36. [3]周 蕾, 王 莹, 张永健, 等. V+Ti微合金化Mn-Cr系贝氏体型非调质钢的氢脆敏感性[J]. 金属热处理, 2024, 49(7): 106-112. Zhou Lei, Wang Ying, Zhang Yongjian, et al. Hydrogen embrittlement of V+Ti microalloyed Mn-Cr bainitic forging steel[J]. Heat Treatment of Metals, 2024, 49(7): 106-112. [4]刘年富, 沈 伟, 田钱仁, 等. 汽车用非调质钢的发展现状及趋势[J]. 钢铁钒钛, 2024, 45(2): 115-124. Liu Nianfu, Shen Wei, Tian Qianren, et al. Overview of non-quenched and tempered steel for automotive[J]. Iron Steel Vanadium Titanium, 2024, 45(2): 115-124. [5]Khodabandeh A R, Jahazi M, Yue S, et al. Impact toughness and tensile properties improvement through microstructure control in hot forged Nb-V microalloyed steel[J]. ISIJ International, 2005, 45(2): 272-280. [6]Dini G, Vaghefi M M, Shafyei A. The influence of reheating temperature and direct-cooling rate after forging on microstructure and mechanical properties of V-microalloyed steel 38MnSiVS5[J]. ISIJ International, 2006, 46(1): 89-92. [7]Yu D, Dunne D P, Chandra T, et al. Austenite grain coarsening and formation of intragranular ferrite in HSLA steels deoxidized with Ti and Al[J]. Materials Transactions JlM, 1996, 37(10): 1554-1560. [8]Park J S, Ha Y S, Lee S J, et al. Dissolution and recipitation kinetics of Nb(C, N) in austenite of a low-carbon Nb-microalloyed steel[J]. Metallurgical and Materials Transactions A, 2009, 40(3): 560-568. [9]窦 坤. 钒微合金化钢连铸方坯凝固特性与组织性能研究[D]. 北京: 北京科技大学, 2016. [10]李云峰, 文光华, 唐 萍, 等. 冷却模式对板坯连铸微合金钢角部表层组织的影响[C]//第八届中国钢铁年会论文集. 2011: 1-7. [11]Carpenter K R, Dippenaar R, Killmore C R. Hot ductility of Nb- and Ti-bearing microalloyed steels and the influence of thermal history[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40(3): 573-580. [12]张丽芳. 高Cr铁基合金连续冷却固态相变与动力学模拟[D]. 天津: 天津大学, 2011. [13]Suh D W, Oh C S, Han H N, et al. Dilatometric analysis of austenite decomposition considering the effect of non-isotropic volume change[J]. Acta Materialia, 2007, 55(8): 2659-2669. [14]白晓路, 张小伟, 李梦飞, 等. 铌微合金化建筑用钢连铸坯角部裂纹控制[J]. 连铸, 2022, 41(2): 61-65. Bai Xiaolu, Zhang Xiaowei, Li Mengfei, et al. Corner crack controlling of niobium microalloyed steel billet for construction[J]. Continuous Casting, 2022, 41(2): 61-65. [15]王 勇, 杨树峰, 李京社, 等. 精冲钢连铸坯角部横裂纹产生原因及控制措施[J]. 连铸, 2022, 41(1): 49-55. Wang Yong, Yang Shufeng, Li Jingshe, et al. Causes and control measures of corner transverse cracks in fine blanking steel continuous casting billet[J]. Continuous Casting, 2022, 41(1): 49-55. [16]Konishi J, Militzer M, Brimacombe J K, et al. Modeling the formation of longitudinal facial cracks during continuous casting of hypoperitectic steel[J]. Metallugical and Materials Transactions B, 2002, 33(3): 413-421. |