金属热处理 ›› 2025, Vol. 50 ›› Issue (11): 24-31.DOI: 10.13251/j.issn.0254-6051.2025.11.004

• 材料研究 • 上一篇    下一篇

Nb/V复合微合金化32MnCrMo超高强热成形钢的连续冷却转变行为

卢茜倩1, 陈志美2,3, 崔磊1, 谷海容1, 刘伟明2,3, 刘永刚1, 魏海莲4, 潘红波2,3   

  1. 1.马鞍山钢铁股份有限公司 技术中心, 安徽 马鞍山 243003;
    2.安徽工业大学 冶金减排与资源综合利用教育部重点实验室, 安徽 马鞍山 243002;
    3.安徽工业大学 安徽省低碳冶金与固废资源化重点实验室, 安徽 马鞍山 243002;
    4.安徽工业大学 材料科学与工程学院, 安徽 马鞍山 243002
  • 收稿日期:2025-06-04 修回日期:2025-09-29 发布日期:2025-12-16
  • 通讯作者: 潘红波,教授,E-mail:panhb718@163.com
  • 作者简介:卢茜倩(1989—),女,工程师,硕士,主要从事汽车先进高强钢研究,E-mail:172451373@qq.com。
  • 基金资助:
    国家自然科学基金(U1860105,52404334);安徽省重点研发计划(202304a05020026);安徽省高校自科重大项目(2024AH040025)

Continuous cooling transformation behavior of Nb/V composite micro-alloyed 32MnCrMo ultra-high strength hot-stamping steel

Lu Qianqian1, Chen Zhimei2,3, Cui Lei1, Gu Hairong1, Liu Weiming2,3, Liu Yonggang1, Wei Hailian4, Pan Hongbo2,3   

  1. 1. Technology Center, Maanshan lron and Steel Co., Ltd., Ma'anshan Anhui 243003, China;
    2. Key Laboratory of Metallurgical Emission Reduction and Resources Recycling, Ministry of Education, Anhui University of Technology, Ma'anshan Anhui 243002, China;
    3. Anhui Key Laboratory of Low Carbon Metallurgy and Solid Waste Resource Utilization, Anhui University of Technology, Ma'anshan Anhui 243002, China;
    4. School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan Anhui 243002, China
  • Received:2025-06-04 Revised:2025-09-29 Published:2025-12-16

摘要: 通过热膨胀试验对Nb/V复合微合金化32MnCrMo超高强热成形钢的连续冷却转变行为进行了研究,结合光学显微镜、扫描电镜与维氏硬度计的表征分析与JMatPro热力学软件计算,探讨了奥氏体化温度与冷却速率对试验钢组织与性能演变的影响及其作用机理。结果表明:奥氏体化温度与冷却速率对CCT曲线的形态与转变区域影响不大,只是随着奥氏体化温度的升高,铁素体与珠光体开始转变温度降低。但是,奥氏体化温度与冷却速率对试验钢中组织形态、含量以及硬度影响较大。在低冷却速率(1 ℃/s)下,不同奥氏体化温度下的组织均以铁素体、岛状马氏体与贝氏体为主,此时硬度变化不大,其值为176.5~199.6 HV0.5。当冷却速率为20 ℃/s时,奥氏体化温度对组织与性能有显著影响,850 ℃奥氏体化时组织以贝氏体与铁素体为主,含有少量马氏体,硬度为277.4 HV0.5;然而,在950 ℃奥氏体化时组织为板条状马氏体与少量贝氏体,硬度为485.0 HV0.5。

关键词: 热成形钢, 连续冷却转变, 奥氏体化温度, 冷却速率, 组织, 性能

Abstract: Continuous cooling transformation behavior of the Nb/V composite microalloyed 32MnCrMo ultra-high strength hot-stamping steel was studied through thermal dilatometric experiments. Combined with characterization analysis by optical microscope, scanning electron microscope, Vickers hardness tester, and JMatPro thermodynamic software calculation, the evolution and mechanism of the microstructure and properties of the tested steel at different austenitizing temperatures and cooling rates were explored. The results indicate that the austenitizing temperature and cooling rate have a little effect on the appearance and transformation region of the CCT curve, except that the temperature at which ferrite and pearlite begin to transform decreases with the austenitizing temperature increasing. However, the austenitizing temperature and cooling rate have a significant effect on the morphology and content of microstincture and hardness. At lower cooling rate(1 ℃/s), the microstructure at different austenitizing temperatures is dominated by ferrite, island martensite, and bainite, with a little change in hardness ranging from 176.5 HV0.5 to 199.6 HV0.5. At a cooling rate of 20 ℃/s, the austenitizing temperature has a significant effect on the microstructure and properties. At austenitizing temperature of 850 ℃, the microstructure is mainly composed of bainite and ferrite, with a small amount of martensite and the hardness of 277.4 HV0.5. However, the microstructure of the tested steel austenitized at 950 ℃ is lath martensite and a small amount of bainite, and the hardness is 485.0 HV0.5.

Key words: hot-stamping steel, continuous cooling transformation, austenitizing temperature, cooling rate, microstructure, properties

中图分类号: