[1] Li Jiaqi, Tong Chenpeng, Zhang Ruiqiang, et al. A data-informed review of scientific and technological developments and future trends in hot stamping[J]. International Journal of Lightweight Materials and Manufacture, 2024, 2(7): 327-343. [2] 应善强, 张义和, 曹光祥. 汽车轻量化与高强度钢板的应用[J]. 汽车工艺与材料, 2012(10): 11-23. [3] Karakoyun F, Kiritsis D, Martinsen K. Holistic life cycle approach for lightweight automotive components[J]. Metallurgical Research & Technology, 2014, 111(3): 137-146. [4] 龚清阳, 王广逸. 汽车碰撞的安全性设计和改进[J]. 时代汽车, 2023(1): 130-132. Gong Qingyang, Wang Guangyi. Safety design and improvement for car collisions[J]. Auto Time, 2023(1): 130-132. [5] 李 扬, 刘汉武, 杜云慧, 等. 汽车用先进高强钢的应用现状和发展方向[J]. 材料导报, 2011, 25(7): 101-104. Li Yang, Liu Hanwu, Du Yunhui, et al. Applications and developments of AHSS in automobile industry[J]. Materials Review, 2011, 25(7): 101-104. [6] 赵福全, 吴成明, 潘之杰, 等. 中国汽车安全技术的现状与展望[J]. 汽车安全与节能学报, 2011, 2(2): 111-121. Zhao Fuquan, Wu Chengming, Pan Zhijie, et al. Status and prospect of automotive safety technology in China[J]. Journal of Automotive Safety and Energy, 2011, 2(2): 111-121. [7] 刘仁东, 吴 萌, 胡智评, 等. 汽车用钢的发展与低熵化先进高强钢设计[J]. 鞍钢技术, 2024(3): 1-8. Liu Rendong, Wu Meng, Hu Zhiping, et al. Development history of automobile steels and advanced high strength steels with novel low-entropy design[J]. Angang Technology, 2024(3): 1-8. [8] 李 军, 刘 鑫, 曹广祥, 等. 汽车车身高强度钢的应用发展及挑战[J]. 汽车工艺与材料, 2021(8): 1-6. Li Jun, Liu Xin, Cao Guangxiang, et al. Application development and challenge on high strength steel for automobile body[J]. Automobile Technology & Material, 2021(8): 1-6. [9] 赵征志, 陈伟健, 高鹏飞, 等. 先进高强度汽车用钢研究进展及展望[J]. 钢铁研究学报, 2020, 32(12): 1059-1076. Zhao Zhengzhi, Chen Weijian, Gao Pengfei, et al. Progress and perspective of advanced high strength automotive steel[J]. Journal of Iron and Steel Research International, 2020, 32(12): 1059-1076. [10] 龙江启, 兰凤崇, 陈吉清. 车身轻量化与钢铝一体化结构新技术的研究进展[J]. 机械工程学报, 2008, 44(6): 27-35. Long Jiangqi, Lan Fengchong, Chen Jiqing. New technology of lightweight and steel-aluminum hybrid structure car body[J]. Journal of Mechanical Engineering, 2008, 44(6): 27-35. [11] Cecchel S. Materials and technologies for lightweighting of structural parts for automotive applications[J]. SAE International Journal of Materials and Manufacturing, 2021, 14(1): 81-98. [12] Hu P, Ying L, He B. Hot Stamping Advanced Manufacturing Technology of Lightweight Car Body[M]. Springer Singapore, 2017. [13] 张志勤, 何立波, 高真凤. 蒂森克虏伯公司拼焊板生产技术与研发概述[J]. 鞍钢技术, 2006(4): 20-24. Zhang Zhiqin, He Libo, Gao Zhenfeng. Tailored blank production technique and development summarization of ThyssenKrupp Steel[J]. Angang Technology, 2006(4): 20-24. [14] Jambor A, Beyer M. New cars-new materials[J]. Material & Design, 1997, 18: 203-209. [15] Marion Merklein, Michael Wieland, Michael Lechner. Hot stamping of boron steel sheets with tailored properties: A review[J]. Journal of Materials Processing Technology, 2016, 228: 11-24. [16] 桂中祥, 张宜生, 王子健. 汽车超高强钢热冲压成形新工艺-选择性冷却[J]. 热加工工艺, 2013, 42(1): 108-113. Gui Zhongxiang, Zhang Yisheng, Wang Zijian. A new technology of hot stamping ultra-high strength automobile-selective cooling[J]. Hot Working Technology, 2013, 42(1): 108-113. [17] 江 亮, 廖铭煜, 王振东, 等. 冷却速率对δ-TRIP钢包晶相变的影响[J]. 工程科学学报, 2023, 45(5): 747-754. Jiang Liang, Liao Mingyu, Wang Zhendong, et al. Effect of cooling rate on the peritectic transformation of δ-TRIP steel[J]. Chinese Journal of Engineering, 2023, 45(5): 747-754. [18] 周明星, 池亦骋, 刘敬韬, 等. 相变温度和奥氏体化温度对一种含Nb高碳钢相变动力学和组织的影响[J]. 钢铁钒钛, 2024, 45(4): 143-149. Zhou Mingxing, Chi Yicheng, Liu Jingtao, et al. Effects of transformation temperature and austenitization temperature on the transformation kinetics and microstructure of a Nb microalloyed high-carbon steel[J]. Iron Steel Vanadium Titanium, 2024, 45(4): 143-149. [19] Sajjadi S A, Zebarjad S M. Isothermal transformation of austenite to bainite in high carbon steels[J]. Journal of Materials Processing Technology, 2007, 189(1-3): 107-113. [20] 王 蕾, 唐 荻, 宋 勇. 扩散过程控制下的奥氏体连续冷却转变[J]. 金属学报, 2015, 51(11): 1341-1348. Wang Lei, Tang Di, Song Yong. Austenite transforming in continuous cooling process under diffusion control model[J]. Acta Metallurgica Sinica, 2015, 51(11): 1341-1348. |