[1]姜定成, 田茂江, 王 勇, 等. 镍铬系精密电阻合金的特性与研究现状[J]. 电工材料, 2017(5): 23-28. Jiang Dingcheng, Tian Maojiang, Wang Yong, et al. Characteristics and research status of nickel-chromium based precision resistance alloy[J]. Electrical Materials and Applications, 2017(5): 23-28. [2]YB/T 5260—2013, 镍铬基精密电阻合金丝[S]. [3]杨贤军, 王 勇, 徐永红, 等. 高精密金属箔电阻及电阻合金箔材研究[J]. 自动化仪表, 2018, 39(6): 54-57. Yang Xianjun, Wang Yong, Xu Yonghong, et al. Research on the high precision metal foil resistor and material of resistance alloy foil[J]. Process Automation Instrumentation, 2018, 39(6): 54-57. [4]GB/T 6145—2010, 锰铜、康铜精密电阻合金线、片及带[S]. [5]Braudaway D W. Precision resistors: A review of material characteristics, resistor design, and construction practices[J]. IEEE Transactions on Instrumentation & Measurement, 1999, 48(5): 878-883. [6]Marceau R K W, Ceguerra A V, Breen A J, et al. Atom probe tomography investigation of heterogeneous short-range ordering in the ‘komplex’ phase state (K-state) of Fe-18Al (at.%)[J]. Intermetallics, 2015, 64: 23-31. [7]Thomas H. Über Widerstandslegierungen[J]. Zeitschrift für Physik A Hadrons and Nuclei, 1951, 129(2): 219-232. [8]Willey R J. Formation of the K-state in a Ni-Fe-Mo-Cu alloy[J]. Journal of Materials Science, 1978, 13(4): 871-875. [9]靳淑静, 王 清, 董 闯. 固溶体近程有序结构与合金设计[J]. 材料导报, 2014, 28(3): 114-117. Jin Shujing, Wang Qing, Dong Chuang. The short range order in solid solutions and alloys design[J]. Materials Reports, 2014, 28(3): 114-117. [10]Schweika W, Haubold H G. Neutron-scattering and monte carlo study of short-range order and atomic interaction in Ni0.89Cr0.11[J]. Physical Review B, 1988, 37(16): 9240-9248. [11]喻文新, 王 勇, 杨贤军, 等. 固溶工艺对Ni-Cr-Al-Fe合金电学性能及屈服强度的影响[J]. 金属热处理, 2020, 45(5): 62-68. Yu Wenxin, Wang Yong, Yang Xianjun, et al. Effect of solution treatment on electrical properties and yield strength of Ni-Cr-Al-Fe alloy[J]. Heat Treatment of Metals, 2020, 45(5): 62-68. [12]何志渊. 目前镍铬改良型精密高电阻合金的发展概况[J]. 仪表材料, 1982(2): 50. [13]Wang Y, Jiang D C, Yu W X, et al. Short-range ordering in a commercial Ni-Cr-Al-Fe precision resistance alloy[J]. Materials & Design, 2019, 181: 107981. [14]Pogatscher S. Phase Transitions in Quenched Nonferrous Metallic Systems[M]. Leoben: Montanuniversitat Leoben, 2017. [15]Hsiao H W, Feng R, Ni H, et al. Data-driven electron-diffraction approach reveals local short-range ordering in CrCoNi with ordering effects[J]. Nature Communications, 2022, 13: 6651. [16]Zhang R, Zhao S, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy[J]. Nature, 2020, 581: 283-287. [17]Zhou L, Wang Q, Wang J. et al. Atomic-scale evidence of chemical short-range order in CrCoNi medium-entropy alloy[J]. Acta Materialia, 2022, 224: 117490. [18]李双元, 王 宏, 彭渝丽, 等. 退火工艺对冷轧态CoCrNi中熵合金组织与性能的影响[J]. 西安工业大学学报, 2020, 40(1): 95-101. Li Yuanshuang, Wang Hong, Peng Yuli, et al. Effect of annealing on microstructure and properties of cold rolled CoCrNi medium-entropy alloy[J]. Journal of Xi'an Technological University, 2020, 40(1): 95-101. [19]叶锐曾, 徐志超, 葛占英, 等. 镍基变形高温合金中弯曲晶界形成的机制[J]. 金属学报, 1985, 21(2): 37-138. Ye Ruizeng, Xu Zhichao, Ge Zhanying, et al. Mechanism of ziggag grain boundary formation in wrought nickelbase superalloys[J]. Acta Metallurgica Sinica, 1985, 21(2): 37-138. [20]余永宁. 金属学原理[M]. 北京: 冶金工业出版社, 2021. [21]Darowski N, Zizak I, Schumacher G, et al. Temperature dependence of x-ray intensity profile FWHM of the γ′ phase in the creep-deformed single crystal superalloy SC16[J]. Journal of Physics D: Applied Physics, 2005, 38: A200-A203. [22]Rai Sanjay, Choudhary B K, Jayakumar T, et al. Characterization of low cycle fatigue damage in 9Cr-1Mo ferritic steel using X-ray diffraction technique[J]. International Journal of Pressure Vessels and Piping, 1999, 76(5): 275-281. |