[1]赵永庆. 高温钛合金研究[J]. 钛工业进展, 2001(1): 33-39. [2]刘全明, 张朝晖, 刘世锋, 等. 钛合金在航空航天及武器装备领域的应用与发展[J]. 钢铁研究学报, 2015, 27(3): 1-4. Liu Quanming, Zhang Zhaohui, Liu Shifeng, et al. Application and development of titanium alloy in aerospace and military hardware[J]. Journal of Iron and Steel Research, 2015, 27(3): 1-4. [3]田永武, 朱乐乐, 李伟东. 高温钛合金的应用及发展[J]. 热加工工艺, 2020, 49(8): 17-20. Tian Yongwu, Zhu Lele, Li Weidong. Application and development of high temperature titanium alloys[J]. Hot Working Technology, 2020, 49(8): 17-20. [4]Banerjee D, Gogia A K, Nandy T K. A new ordered orthorhombic phase in a Ti3Al-Nb alloy[J]. Acta Metallurgica, 1988, 36(4): 871-882. [5]张建伟, 梁晓波, 程云君, 等. 航空发动机用Ti3Al合金和Ti2AlNb合金研制进展[J]. 钢铁研究学报, 2011, 23(2): 545-548. Zhang Jianwei, Liang Xiaobo, Cheng Yunjun, et al. Research and application of Ti3Al and Ti2AlNb alloys on aero-engine[J]. Journal of Iron and Steel Research, 2011, 23(2): 545-548. [6]邢丕臣, 师俊东, 马 雄, 等. 热处理工艺对 Ti2AlNb 合金锻件显微组织和拉伸性能的影响[J]. 热加工工艺, 2021, 51(24): 119-124. Xing Pichen, Shi Jundong, Ma Xiong, et al. Effects of heat treatment process on microstructure and tensile properties of Ti2AlNb alloy forging[J]. Hot Working Technology, 2021, 51(24): 119-124. [7]刘石双, 曹京霞, 周 毅, 等. Ti2AlNb合金研究与展望[J]. 中国有色金属学报, 2021, 31(11): 3106-3126. Liu Shuangshi, Cao Jingxia, Zhou Yi, et al. Research and prospect of Ti2AlNb alloy[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(11): 3106-3126. [8]Goyal K, Sardana N. Phase stability and microstructural evolution of Ti2AlNb alloys-A review[J]. Materials Today: Proceedings, 2020, 41: 951-968. [9]王 斌, 卫俊鑫, 李 升, 等. 热轧及热处理对Ti2AlNb合金板材显微组织及力学性能的影响[J]. 中国有色金属学报, 2023, 33(10): 3251-3263. Wang Bin, Wei Junxin, Li Sheng, et al. Effect of hot rolling and heat treatments on microstructure and mechanical properties of Ti2AlNb alloy plates[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(10): 3251-3263. [10]Zhang Penghui, Zeng Weidong, Zhang Fan, et al. In-situ investigation of tensile anisotropy mechanism in an advanced Ti2AlNb-based alloy associated with CRSS ratio and damage model[J]. Materials Science and Engineering A, 2024, 890: 145894. [11]Zhang Penghui, Zeng Weidong, Ma Haoyuan, et al. Research on tensile anisotropy of Ti-22Al-25Nb alloy isothermally forged in B2 phase region related with texture and variant selection[J]. Materials Characterization, 2023, 201: 112899. [12]Zhang Penghui, Zeng Weidong, Jia Runchen, et al. Tensile behavior and deformation mechanism for Ti-22Al-25Nb alloy with lamellar O microstructures[J]. Materials Science and Engineering A, 2021, 803: 140492. [13]Wu Yang, Kou Hongchao, Wu Zhihong, et al. Dynamic recrystallization and texture evolution of Ti-22Al-25Nb alloy during plane-strain compression[J]. Journal of Alloys and Compounds, 2018, 748: 844-852. [14]Dey S R, Suwas S, Fundenberger J J, et al. Evolution of crystallographic texture and microstructure in the orthorhombic phase of a two-phase alloy Ti-22Al-25Nb[J]. Intermetallics, 2009, 17(8): 622-633. [15]Rollett A D, Smith P R, James M R. Texture and anisotropy of Ti-22Al-23Nb foil[J]. Materials Science and Engineering A, 1998, 257(1): 77-86. [16]Semiatin S L, Smith P R. Microstructural evolution during rolling of Ti-22Al-23Nb sheet[J]. Materials Science and Engineering A, 1995, 202(1/2): 26-35. [17]Suwas S, Ray R K. Texture evolution during β→O→α2 and β→α2 phase transformations in a Ti3Al-Nb alloy[J]. Materials Science and Engineering A, 2005, 391(1/2): 249-255. [18]裴会平, 刘 冬, 姚利盼, 等. Ti2AlNb合金研究进展及在航空发动机上应用可行性分析[J]. 材料工程, 2025, 53(1): 28-44. Pei Huiping, Liu Dong, Yao Lipan, et al. Research progress of Ti2AlNb alloy and feasibility analysis of its application in aero engines[J]. Journal of Materials Engineering, 2025, 53(1): 28-44. [19]冯艾寒, 李渤渤, 沈 军. Ti2AlNb基合金的研究进展[J]. 材料与冶金学报, 2011, 10(1): 34-42. Feng Aihan, Li Bobo, Shen Jun. Recent advances on Ti2AlNb-based alloys[J]. Journal of Materials and Metallurgy, 2011, 10(1): 34-42. [20]Zheng Youping, Zeng Weidong, Li Dong, et al. Fracture toughness of the bimodal size lamellar O phase microstructures in Ti-22Al-25Nb (at.%) orthorhombic alloy[J]. Journal of Alloys and Compounds, 2017, 709: 511-518. |