[1] 林 男, 刘施峰, 柳亚辉, 等. 高纯钽板异步轧制及后续退火过程中微观组织及织构演变研究[J]. 电子显微学报, 2018, 37(4): 332-338. Lin Nan, Liu Shifeng, Liu Yahui, et al. Study on microstructure and texture evolution during asymmetrical rolling and subsequent annealing of high pure tantalum plate[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(4): 332-338. [2] Madhavan R, Kalsar R, Ray R K, et al. Role of stacking fault energy on texture evolution revisited[J]. IOP Conference, 2015, 82: 012031. [3] Engler O, Tom C N, Huh M Y. A study of through-thickness texture gradients in rolled sheets[J]. Metallurgical and Materials Transactions A, 2000, 31(9): 2299-2315. [4] Zhang Z, Chen D, Zhao H, et al. A comparative study of clock rolling and unidirectional rolling on deformation/recrystallization microstructure and texture of high purity tantalum plates[J]. International Journal of Refractory Metals and Hard Materials, 2013, 41: 453-460. [5] Michaluk C A. Correlating discrete orientation and grain size to the sputter deposition properties of tantalum[J]. Journal of Electronic Materials, 2002, 31(1): 2-9. [6] 陶振兰, 王震遐, 朱福英, 等. BaF2晶体的取向和入射束的剂量对溅射的影响[J]. 物理学报, 1994, 43(10): 1734-1738. Tao Zhenlan, Wang Zhenxia, Zhu Fuying, et al. Effect of crystal orientation and incident ion fluence on sputtering from ion-irradiated BaF2[J]. Acta Physica Sinica, 1994, 43(10): 1734-1738. [7] He J, Zhang Z, Bao Z, et al. Effect of Ta interlayers on texture and magnetic properties of FeSi films with micrometer thickness[J]. Materials, 2022, 15(19): 6789. [8] 祝佳林, 刘施峰, 曹 宇, 等. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响[J]. 金属学报, 2019, 55(8): 1019-1033. Zhu Jialin, Liu Shifeng, Cao Yu, et al. Effect of cross rolling cycle on the deformed and recrystallized gradient in high-purity tantalum plate[J]. Acta Metallurgica Sinica, 2019, 55(8): 1019-1033. [9] 毛宇成, 刘施峰, 范海洋, 等. 高纯钽交叉轧制过程中微观结构和织构梯度的演变[J]. 电子显微学报, 2017, 36(1): 7-13. Mao Yucheng, Liu Shifeng, Fan Haiyang, et al. Evolution of texture gradient and microstructure of high purity tantalum in clock-rolling process[J]. Journal of Chinese Electron Microscopy Society, 2017, 36(1): 7-13. [10] Sarkar A, Sanyal S, Bandyopadhyay T K, et al. Implications of microstructure, Taylor factor distribution and texture on tensile properties in a Ti-added Fe-Mn-Al-Si-C steel[J]. Materials Science and Engineering A, 2019, 767: 138402. [11] 邓 超. 多晶高纯钽板轧制变形与退火行为研究[D]. 重庆: 重庆大学, 2014. [12] Betanda Y A, Helbert A L, Brisset F, et al. Measurement of stored energy in Fe-48%Ni alloys strongly cold-rolled using three approaches: Neutron diffraction, Dillamore and KAM approaches[J]. Materials Science and Engineering A, 2014, 614: 193-198. [13] Nix W D, Gao H. Indentation size effects in crystalline materials: A law for strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411-425. [14] Fleck N A, Muller G M, Ashby M F, et al. Strain gradient plasticity: Theory and experiment[J]. Acta Metallurgica et Materialia, 1994, 42(2): 475-487. [15] 祝佳林. 高纯Ta板微观组织均匀性及轧制工艺参数对其影响机制的多尺度研究[D]. 重庆: 重庆大学, 2021. [16] Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates role of interfaces[J]. Acta Materialia, 2016, 116: 43-52. [17] Jiang J, Britton T B, Wilkinson A J. Evolution of dislocation density distributions in copper during tensile deformation[J]. Acta Materialia, 2013, 61(19): 7227-7239. [18] Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD[J]. Materials Science and Engineering A, 2010, 527(10/11): 2738-2746. [19] Hughes D A, Hansen N. Microstructure and strength of nickel at large strains[J]. Acta Materialia, 2000, 48(11): 2985-3004. [20] Kuhlmann-Wilsdorf D, Hansen N. Geometrically necessary, incidental and subgrain boundaries[J]. Scripta Metallurgica et Materialia, 1991, 25(7): 1557-1562. [21] Barnet M R, Kestens L. Formation of {111} and {111} textures in cold rolled and annealed IF sheet steel[J]. ISIJ International, 1999, 39(9): 923-929. |