[1]张 军, 黄太文, 刘 林, 等. 单晶高温合金凝固特性与典型凝固缺陷研究 [J]. 金属学报, 2015, 51: 1163-1178. Zhang Jun, Huang Taiwen, Liu Lin, et al. Advances in solidification characteristics and typical casting defects in nickel-based single crystal superalloys[J]. Acta Metallurgica Sinica, 2015, 51: 1163-1178. [2]李金国, 孟祥斌, 刘纪德, 等. 单晶高温合金涡轮叶片的常见凝固缺陷及控制方法[J]. 特种铸造及有色合金, 2021, 41: 1321-1327. Li Jinguo, Meng Xiangbin, Liu Jide, et al. Common solidification defects and inhibition methods in single crystal superalloy turbine blades[J]. Special Casting and Nonferrous Alloys, 2021, 41: 1321-1327. [3]韩东宇. 单晶高温合金雀斑缺陷的形成、演化及其对持久性能的影响[D]. 合肥: 中国科学技术大学, 2021. Han Dongyu. Formation and evolution of freckle defect and its effect on creep rupture properties of Ni-based single crystal superalloys[D]. Hefei: University of Science and Technology of China, 2021. [4]张小丽, 周亦胄, 金 涛, 等. 镍基单晶高温合金杂晶形成倾向性的研究[J]. 金属学报, 2012, 48: 1229-1236. Zhang Xiaoli, Zhou Yizhou, Jin Tao, et al. Study on the tendency of stray grain formation of Ni-based single crystal superalloys[J]. Acta Metallurgica Sinica, 2012, 48: 1229-1236. [5]Xia H X, Yang Y H, Feng Q S, et al. Generation mechanism and motion behavior of sliver defect in single crystal Ni-based superalloy[J]. Journal of Materials Science and Technology, 2023, 137: 232-246. [6]孙德建. 镍基单晶高温合金叶片平台区域取向缺陷研究[D]. 西安: 西北工业大学, 2019. Sun Dejian. Study on misorientation defects in the platform region of Ni-based single crystal superalloys turbine blade[D]. Xi'an: Northwestern Polytechnical University, 2019. [7]肖久寒, 姜卫国, 李凯文, 等. 利用引晶技术制备大尺寸镍基单晶涡轮导向叶片[J]. 航空材料学报, 2023, 43: 22-31. Xiao Jiuhan, Jiang Weiguo, Li Kaiwen, et al. Manufacturing of large size nickel-based single crystal turbine guide vanes by grain continuator technology[J]. Journal of Aeronautical Materials, 2023, 43: 22-31. [8]Yang L W, Ren N, Li J, et al. Thermal-solutal convection-induced low-angle grain boundaries in single-crystal nickel-based superalloy solidification[J]. Journal of Materials Science and Technology, 2025, 208: 214-229. [9]Aveson J W, Reinhart G, Goddard C J L, et al. On the deformation of dendrites during directional solidification of a nickel-based superalloy[J]. Metallurgical and Materials Transactions A, 2019, 50(11): 5234-5241. [10]Chen C, Sun J X, Diao A M, et al. On the dendrite deformation and evolution mechanism of Ni-based superalloy during directional solidification[J]. Journal of Alloys and Compounds, 2022, 891: 161949. [11]霍 苗, 刘 林, 黄太文, 等. 镍基单晶高温合金小角度晶界的形成机制、影响因素与控制措施[J]. 材料导报, 2018, 32: 3394-3404. Huo Miao, Liu Lin, Huang Taiwen, et al. Formation mechanism, influencing factors and control measures of low angle boundaries in Ni-based single crystal superalloys [J]. Materials Reports, 2018, 32: 3394-3404. [12]Shi Z X, Li J R, Liu S Z, et al. Effect of LAB on the stress rupture properties and fracture characteristic of DD6 single crystal superalloy[J]. Rare Metal Materials and Engineering, 2012, 41(6): 962-966. [13]赵金乾, 李嘉荣. 单晶高温合金小角度晶界组织演化[J]. 特种铸造及有色合金, 2018, 38: 122-125. Zhao Jinqian, Li Jiarong. Microstructure evolution of low angle grain boundaries in single crystal superalloy [J]. Special Casting & Nonferrous Alloys, 2018, 38: 122-125. [14]Huang M, Zhuo L C, Liu Z L, et al. Misorientation related microstructure at the grain boundary in a nickel-based single crystal superalloy [J]. Materials Science and Engineering A, 2015, 640: 394-401. [15]王钦佳. C和B微合金化DD412镍基单晶/双晶高温合金持久、疲劳行为与强化机理研究 [D]. 北京: 北京科技大学, 2023. Wang Qinjia. Study on the stress rupture and fatigue behaviors and strengthening mechanism of C and B microalloyed DD412 Ni-based single crystal/bicrystal superalloy [D]. Beijing: University of Science and Technology Beijing, 2023. [16]Xu H, Li P, Zhou Y Z, et al. Investigation on in situ tensile behavior of superalloy bicrystals with different GB misorientations [J]. Metallurgical and Materials Transactions A, 2014, 45(9): 3876-3881. [17]史振学, 李嘉荣, 刘世忠, 等. DD6单晶高温合金叶片小角度晶界组织 [J]. 稀有金属材料与工程, 2011, 40: 2117-2120. Shi Zhenxue, Li Jiarong, Liu Shizhong, et al. Microstructures of low angle boundaries of DD6 single crystal superalloy blades [J]. Rare Metal Materials and Engineering, 2011, 40: 2117-2120. [18]Liu Z F, Li M J, Wang F, et al. Effects of rhenium and high-angle grain boundaries upon the elemental distribution and microstructure of Ni-based single-crystal superalloys [J]. Materials Characterization, 2023, 196: 112655. [19]Zhang L L, Yang Q, Chen J Y, et al. Synergy of γ′ phase, MC carbide and grain boundary phase on creep behavior for nickel-based superalloy K439B[J]. Materials Science and Engineering A, 2024, 915: 147261. [20]Scholz F, Parsa A B, Thome P, et al. Low angle grain boundaries and re-segregation in single crystal Ni-base superalloys [J]. Journal of Alloys and Compounds, 2025, 1018: 178929. [21]Wang Q J, Song J X, Wang D G, et al. Quantified relation between grain boundary angle and interfacial stability of PWA1484 superalloy during thermal exposure [J]. Metallurgical and Materials Transactions A, 2019, 51(1): 380-389. [22]Yang W C, Duan X Y, Liu C, et al. Damage tolerance of low angle grain boundary in a fourth generation nickel-based single crystal superalloy at 1100 ℃ service conditions [J]. Materials Science and Engineering A, 2023, 881: 145338. [23]卢 琦, 李金国, 金 涛, 等. 镍基双晶高温合金定向凝固过程中的竞争生长[J]. 金属学报, 2011, 47: 639-646. Lu Qi, Li Jinguo, Jin Tao, et al. Competitive growth in bi-crystal of ni-based superalloys during directional solidification[J]. Acta Metallurgica Sinica, 2011, 47: 639-646. [24]陈博文, 曾 强, 李 钢, 等. 固溶温度对DD416镍基单晶高温合金组织及拉伸性能的影响[J]. 金属热处理, 2024, 49(1): 119-126. Chen Bowen, Zeng Qiang, Li Gang, et al. Effect of solution temperature on microstructure and tensile properties of DD416 nickel-based single crystal superalloy[J]. Heat Treatment of Metals, 2024, 49(1): 119-126. [25]李 珂, 韦利明, 梁延祥, 等. 时效处理对镍基单晶高温合金显微组织和硬度的影响[J]. 金属热处理, 2023, 48(12): 21-28. Li Ke, Wei Liming, Liang Yanxiang, et al. Effect of aging treatment on microstructure and hardness of Ni-based single crystal superalloy[J]. Heat Treatment of Metals, 2023, 48(12): 21-28. [26]Park K, Withey P. General view of rhenium-rich particles along defect grain boundaries formed in nickel-based single-crystal superalloy turbine blades: Formation, dissolution and comparison with other phases [J]. Crystals, 2021, 11(10): 1201. [27]马修戈, 吴庆辉, 庞建超, 等. 晶界取向差对双晶高温合金常温和高温拉伸性能的影响[J]. 材料研究学报, 2025, 39: 81-91. Ma Xiuge, Wu Qinghui, Pang Jianchao, et al. Effect of grain boundary misorientation on tensile properties of bi-crystal superalloy at ambient and high temperatures [J]. Chinese Journal of Materials Research, 2025, 39: 81-91. [28]He J Y, Scholz F, Horst O M, et al. On the rhenium segregation at the low angle grain boundary in a single crystal Ni-base superalloy [J]. Scripta Materialia, 2020, 185: 88-93. [29]Shi D F, Zhang Z J, Yang Y H, et al. High-temperature fatigue strength of grain boundaries with different misorientations in nickel-based superalloy bicrystals [J]. Journal of Materials Science and Technology, 2023, 154: 94-106. |