[1]Bhattacharyya A, Subhash G, Arakere N. Evolution of subsurface plastic zone due to rolling contact fatigue of M-50 NiL case hardened bearing steel[J]. International Journal of Fatigue, 2014, 59: 102-113. [2]Abdullah M U, Khan Z A, Kruhoeffer W. Evaluation of dark etching regions for standard bearing steel under accelerated rolling contact fatigue[J]. Tribology International, 2020, 152(1): 106579. [3]Paulson N R, Golmohammadi Z, Walvekar A A, et al. Rolling contact fatigue in refurbished case carburized bearings[J]. Tribology International, 2017, 115: 348-364. [4]Xia Z, Wu D, Han W E H. Rolling contact fatigue failure mechanism of bearing steel on different surface roughness levels under heavy load[J]. International Journal of Fatigue, 2024, 179: 108042. [5]Johnson K L. The strength of surfaces in rolling contact[J]. Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 1989, 203(3): 151-163. [6]Fu H, Wang W, Lu Y, et al. The origin of microstructural alterations in M50 bearing steel undergoing rolling contact fatigue[J]. International Journal of Fatigue, 2023, 175: 107807. [7]Li C, Li B, Jin X, et al. Microstructure and mechanical properties in core of a carburizing 20CrNi2MoV bearing steel subjected to cryogenic treatment[J]. Journal of Iron and Steel Research International, 2021, 28: 360-369. [8]王军威, 李国禄, 王海斗, 等. 氮碳共渗45钢的滚动接触疲劳失效机理[J]. 材料热处理学报, 2012, 33(10): 124-129. Wang Junwei, Li Guolu, Wang Haidou, et al. Rolling contact fatigue mechanism of nitrocarburising 45 steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(10): 124-129. [9]Genel K. Estimation method for the fatigue limit of case hardened steels[J]. Surface and Coatings Technology, 2005, 194(1): 91-95. [10]Cameron T B, Diesburg D E, Kim C. Fatigue and overload fracture of carburized steels[J]. JOM, 1983, 35(7): 37-41. [11]Farfan S, Rubio-Gonzalez C, Cervantes-Hernandez T, et al. High cycle fatigue, low cycle fatigue and failure modes of a carburized steel[J]. International Journal of Fatigue, 2004, 26(6): 673-678. [12]Widmark M, Melander A. Effect of material, heat treatment, grinding and shot peening on contact fatigue life of carburised steels[J]. International Journal of Fatigue, 1999, 21(4): 309-327. [13]鲁翰敏, 孙 聪. 表面硬度对PSHG零件滚动接触性能影响分析[J]. 闽江学院学报, 2023, 44(2): 14-22. Lu Hanmin, Sun Cong. Study on effects of surface hardness on rolling contact properties of PSHG parts[J]. Journal of Minjiang University, 2023, 44(2): 14-22. [14]Asi O, Can A C, Pineault J, et al. The effect of high temperature gas carburizing on bending fatigue strength of SAE 8620 steel[J]. Materials & Design, 2009, 30(5): 1792-1797. [15]Choi Y. A study on the effects of machining-induced residual stress on rolling contact fatigue[J]. International Journal of Fatigue, 2009, 31(10): 1517-1523. [16]Allison B, Pandkar A. Critical factors for determining a first estimate of fatigue limit of bearing steels under rolling contact fatigue[J]. International Journal of Fatigue, 2018, 117: 396-406. [17]Shao Z, Zhu Y, Zhang P, et al. Effect of primary carbides on rolling contact fatigue behaviors of M50 bearing steel[J]. International Journal of Fatigue, 2024, 179: 108054. [18]Cao Z, Liu T, Yu F, et al. Carburization induced extra-long rolling contact fatigue life of high carbon bearing steel[J]. International Journal of Fatigue, 2020, 131: 105351. [19]Cao Y, Xu L, Zhang G, et al. Rolling contact fatigue properties of SAE 8620 steel after case carburizing[J]. Journal of Iron and Steel Research International, 2016, 23(7): 711-716. [20]吴志伟, 杨卯生, 赵昆渝. 高合金表面硬化轴承钢的滚动接触疲劳行为研究[J]. 表面技术, 2021, 50(7): 283-294, 309. Wu Zhiwei, Yang Maosheng, Zhao Kunyu. Study on rolling contact fatigue behavior of high-alloy case-hardened bearing steel[J]. Surface Technology, 2021, 50(7): 283-294, 309. [21]杜宁宇. M50轴承钢碳化物调控与疲劳性能研究[D]. 合肥: 中国科学技术大学, 2022. [22]王 燕. 高温轴承钢中碳化物和高温接触疲劳寿命的研究[D]. 昆明: 昆明理工大学, 2018. [23]尹龙承. 14Cr14Co13Mo4钢Ni缓冲层法渗碳及热处理工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. [24]陈 萼. 渗碳和碳氮共渗对钢表面残余应力的影响[J]. 金属热处理, 1985, 10(4): 22-28. Chen E. The influence of carburizing and carbonitriding on the residual stress on the surface of steels [J]. Heat Treatment of Metals, 1985, 10(4): 22-28. [25]Walvekar A A, Sadeghi F. Rolling contact fatigue of case carburized steels[J]. International Journal of Fatigue, 2017, 95: 264-281. [26]Zhou H, Wei P, Liu H, et al. Roles of microstructure, inclusion, and surface roughness on rolling contact fatigue of a wind turbine gear[J]. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43(7): 1368-1383. [27]杨红兵, 邵子恒, 颜 莹, 等. 表面渗碳高强轴承钢滚动接触疲劳行为研究[J]. 材料导报, 2025, 39(12): 24050074. Yang Hongbing, Shao Ziheng, Yan Ying, et al. Research on rolling contact fatigue behavior of high-strength bearing steel with carburized surface[J]. Materials Reports, 2025, 39(12): 24050074. [28]刘亚涛. 非金属夹杂物对轴承钢滚动接触疲劳性能影响的有限元模拟研究[D]. 秦皇岛: 燕山大学, 2024. [29]关 健. 航空滚动轴承用M50钢的接触疲劳损伤行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |