[1] Topaç M M, Tanrçverdi A, Çolak O, et al. Analysis of the failure modes and design improvement of an eccentrically loaded connecting rod for a double front axle steering linkage prototype[J]. Engineering Failure Analysis, 2021, 122: 105204. [2] Chai M, Rakheja S, Shangguan W B. Relative ride performance analysis of atorsio-elastic suspension applied to front, rear and both axles of an off-road vehicle[J]. International Journal of Heavy Vehicle Systems, 2019, 26(6): 765-789. [3] 章 军, 周路海, 黎军顽, 等. 浸没方式对C形环试样深冷处理组织演变及残余应力的影响[J]. 金属热处理, 2018, 43(4): 223-229. Zhang Jun, Zhou Luhai, Li Junwan, et al. Effect of immersion route on microstructure and residual stress of C-ring during cryogenic treatment[J]. Heat Treatment of Metals, 2018, 43(4): 223-229. [4] Avikal S, Bisht A, Sharma D, et al. Design and fatigue analysis of front axle beam of a heavy duty truck using ansys[J]. Materialstoday: Proceedings, 2020, 26: 3211-3215. [5] Sathish T, Kumar S D, Karthick S. Modelling and analysis of different connecting rod material through finite element route[J]. Materialstoday: Proceedings, 2020, 21: 971-975. [6] Witek L, Zelek P. Stress and failure analysis of the connecting rod of diesel engine[J]. Engineering Failure Analysis, 2019, 97: 374-382. [7] Seralathan S, Mitnala S V, Reddy R V S K, et al. Stress analysis of the connecting rod of compression ignition engine[J]. Materialstoday: Proceedings, 2020, 33: 3722-3728. [8] Leblond J B, Devaux J C. Mathematical modeling of transformation plasticity in steels I: Case of ideal-plastic phases[J]. International Journal of Plasticity, 1989, 5(6): 551-572. [9] Leblond J B. Mathematical modeling of transformation plasticity in steels II: Coupling with strain hardening phenomena[J]. International Journal of Plasticity, 1989, 5(6): 573-591. [10] Gür C H, Tekkaya A E. Numerical investigation of non-homogeneous plastic deformation in quenching process[J]. Materials Science and Engineering A, 2001, 319(12): 164-169. [11] Canale L, Totten E. Overview of distortion and residual stress due to quench processing Part I: Factors affecting quench distortion[J]. International Journal of Materials and Product Technology, 2005, 24(1): 4-52. [12] Lee S J, Lee Y K. Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics[J]. Acta Materialia, 2008, 56(7): 1482-1490. [13] 刘文辉. 基于集群的拖拉机前桥有限元分析及优化[D]. 洛阳: 河南科技大学, 2012. Liu Wenhui. Finite element analysis and optimization of the tractor front axle based on clustering[D]. Luoyang: Henan University of Science and Technology, 2012. [14] Lopez-Garcia R D, Garcia-Pastor F A, Castro-Roman M J, et al. Effect of immersion routes on the quenching distortion of a long steel component using a finite element model[J]. Transactions of the Indian Institute of Metals, 2016, 69(9): 1645-1656. [15] Li Z X, Zhan M, Fan X G, et al. Multi-mode distortion behavior of aluminum alloy thin sheets in immersion quenching[J]. Journal of Materials Processing Technology, 2020, 279: 116576. [16] Goud J S, Srilatha P, Kumar R S V, et al. Heat transfer analysis in a longitudinal porous trapezoidal fin by non-Fourier heat conduction model: An application of artificial neural network with Levenberg-Marquardt approach[J]. Case Studies in Thermal Engineering, 2023, 49: 103265. [17] ir C, Gür C H. A FEM based framework for simulation of thermal treatments: Application to steel quenching[J]. Computational Materials Science, 2008, 44(2): 588-600. [18] 朱振华, 秦训鹏, 高 恺, 等. 重型载重车前轴分层淬火工艺仿真分析[J]. 金属热处理, 2016, 41(5): 162-167. Zhu Zhenhua, Qin Xunpeng, Gao Kai, et al. Simulation analysis of layer by layer quenching process of a heavy truck front axle[J]. Heat Treatment of Metals, 2016, 41(5): 162-167. [19] Warnken N, Ma D, Drevermann A, et al. Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys[J]. Acta Materialia, 2009, 57(19): 5862-5875. [20] Yang Cong, Xia Huxiang, Xu Qingyan, et al. Multiphase-field simulation of the solution heat treatment process in a Ni-based superalloy[J]. Computational Materials Science, 2021, 196: 110550. [21] Wu H, Sun Z, Cao J, et al. Diffusion transformation model in TA15 titanium alloy: The case of nonlinear cooling[J]. Materials and Design, 2020, 191: 108598. [22] Rezaei J, Parsa M H, Mirzadeh H. Phase transformation kinetics of high-carbon steel during continuous heating[J]. Journal of Materials Research and Technology, 2023, 27: 2524-2537. [23] Johnson W A. Reaction kinetics in process of nucleation and growth[J]. Transactions of the American Institute of Mining and Metallurgical Engineers, 1939, 135: 416-458. [24] Inoue T. Process modeling for heat treatment: Current status and future developments[J]. Journal of Shanghai Jiaotong University (Science), 2000, 5(1): 14-25. |