[1] Song Jiangfeng, She Jia, Chen Daolun, et al. Latest research advances on magnesium and magnesium alloys worldwide[J]. Journal of Magnesium and Alloys, 2020, 8(1): 1-41. [2] 王浩宇, 李海冉, 高永浩. 热处理对Mg-Gd-Y-Zr合金微观组织的影响[J]. 金属热处理, 2024, 49(5): 94-99. Wang Haoyu, Li Hairan, Gao Yonghao. Effect of heat treatment on microstructure of Mg-Gd-Y-Zr alloy[J]. Heat Treatment of Metals, 2024, 49(5): 94-99. [3] Song Jiangfeng, Chen Jing, Xiong Xiaoming, et al. Research advances of magnesium and magnesium alloys worldwide in 2021[J]. Journal of Magnesium Alloys, 2022, 10(4): 863-898. [4] 李春雨, 刘 运, 宋 洁, 等. 固溶处理对Mg-6Al-3Zn-0.25Mn合金组织和性能影响[J]. 特种铸造及有色合金, 2023, 43(3): 394-399. Li Chunyu, Liu Yun, Song Jie, et al. Effect of solution treatment on microstructure and mechanical properties of Mg-6Al-3Zn-0.25Mn alloy[J]. Special Casting and Nonferrous Alloys, 2023, 43(3): 394-399. [5] Malik Abdul, Wang Yangwei, Cheng Huanwu, et al. Post deformation analysis of the ballistic impacted magnesium alloys, a short-review[J]. Journal of Magnesium Alloys, 2021, 9: 1505-1520. [6] 刘华燊, 孙有平, 何江美, 等. Al含量及均匀化处理对Mg-Al二元合金组织及阻尼性能的影响[J]. 金属热处理, 2024, 49(7): 70-77. Liu Huashen, Sun Youping, He Jiangmei, et al. Effect of Al content and homogenization on microstructure and damping properties of Mg-Al binary alloys[J]. Heat Treatment of Metals, 2024, 49(7): 70-77. [7] Yan Zhaoming, Li Xubin, Zhang Zhimin, et al. Microstructure evolution, texture and mechanical properties of a Mg-Gd-Y-Zn-Zr alloy fabricated by cyclic expansion extrusion with an asymmetrical extrusion cavity: The influence of passes and processing route[J]. Journal of Magnesium and Alloys, 2021, 9: 964-982. [8] You Chao, Liu Chuming, Wan Yingchun, et al. Dislocations-induced precipitates and their effect on mechanical properties of Mg-Gd-Y-Zr alloy[J]. Joumal of Magnesium and Alloys, 2019, 7(3): 414-418. [9] 庞 浩, 李全安, 陈晓亚, 等. 热处理对Mg-Gd-Y-Zr合金组织、性能和腐蚀行为的影响[J]. 中国稀土学报, 2023, 41(2): 331-339. Pang Hao, Li Quanan, Chen Xiaoya, et al. Effect of heat treatment on microstructure, properties, and corrosion behavior of Mg-Gd-Y-Zr alloy[J]. Journal of the Chinese Society of Rare Earths, 2023, 41(2): 331-339. [10] 刘鸿智, 童景琳. 不同挤压温度下Mg-3Y-1.5Ce-0.5Zr合金的组织与力学性能[J]. 热加工工艺, 2024, 53(8): 104-106, 112. Liu Hongzhi, Tong Jinglin. Microstructure and mechanical properties of Mg-3Y-1.5Ce-0.5Zr alloy under different extrusion temperatures[J]. Hot Working Technology, 2024, 53(8): 104-106, 112. [11] 陈晓亚, 李全安, 陈 君, 等. Gd含量对Mg-Gd-Y-Zr合金组织和性能的影响[J]. 材料热处理学报, 2017, 38(11): 21-27. Chen Xiaoya, Li Quanan, Chen Jun, et al. Effect of Gd content on microstructure and properties of Mg-Gd-Y-Zr alloy[J]. Transactions of Materials and Heat Treatment, 2017, 38(11): 21-27. [12] Zheng Jingxu, Li Zhi, Tan Lida, et al. Precipitation in Mg-Gd-Y-Zr alloy: Atomic-scale insights into structures and transformations[J]. Materials Characterization, 2016, 117: 76-83. [13] 唐昌平, 刘文辉, 陈宇强, 等. 铸造Mg-Gd-Y-Nd-Zr合金中Gd含量的优化[J]. 金属热处理, 2016, 41(16): 75-80. Tang Changping, Liu Wenhui, Chen Yuqiang, et al. Optimization of Gd content in Mg-Gd-Y-Nd-Zr casting alloy[J]. Heat Treatment of Metals, 2016, 41(16): 75-80. [14] Pei Yanbo, Yuan Meng, Wei Enbo, et al. Effects of Sm element addition on the workability and microstructure evolution of Mg-Gd-Y-Zr alloy during hot deformation[J]. Materials Design, 2023, 230: 111962. [15] Pei Yanbo, Yuan Meng, Wei Enbo, et al. Effect of strain rate on dynamic recrystallization mechanism of Mg-Gd-Y-Sm-Zr alloy during hot compression[J]. Journal of Materials Research and Technology, 2023, 25: 5038-5050. [16] Yan Lipeng, Li Quanan, Chen Xiaoya. Microstructure evolution and dynamic precipitation behavior of Mg-10Gd-4Y-1Sm-0.5Zr alloy during backward hot extrusion[J]. Metals and Materials International, 2021, 27(9): 3522-3528. [17] 兖利鹏. 热挤压Mg-Gd-Y-Sm-Zr合金组织和性能研究[D]. 洛阳: 河南科技大学, 2022. [18] Bao Jian, Li Quanan, Chen Xiaoya, et al. Microstructure and texture evolution with Sm addition in extruded Mg-Gd-Sm-Zr alloy[J]. Materials Research Express, 2021, 8(9): 096523. [19] Yang Yan, Xiong Xiaoming, Chen Jing, et al. Research advances in magnesium and magnesium alloys worldwide in 2020[J]. Journal of Magnesium and Alloys, 2021, 9: 705-747. [20] Tang Biyu, Wang Na, Yu Weiyang, et al. Theoretical investigation of typical fcc precipitates in Mg-based alloys[J]. Acta Materialia, 2008, 56: 3353-3359. [21] Zhu Chenyang, Zheng Jingxu, Xiaoqin Zeng, et al. Alignment and strengthening effect of β′ precipitates in Mg-Gd-Y-Zr during ageing process studied by HAADF-STEM and GPA[J]. Philosophical Magazine Letters, 2022, 102(2): 71-80. [22] Yan Lipeng, Li Quanan, Zhu Limin, et al. Investigation of hot extruded GW84 alloy on high temperature tensile properties and microstructure evolution[J]. Journal of Materials Research and Technology, 2021, 13: 408-416. [23] Zheng Jingxu, Zeng Xiaoqin, Chen Bin. Unveiling the interfaces between β′ precipitates in Mg-Gd-Y-Zr alloy: Insights from atomic-scale HAADF-STEM[J]. Advanced Engineering Materials, 2017, 20(6): 1700730. [24] Nie Jianfeng. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys[J]. Scripta Materialia, 2003, 48: 1009-1015. [25] 鲍 键. Mg-Gd(-Sm)-Zr耐热镁合金微观组织和力学行为研究[D]. 洛阳: 河南科技大学, 2022. |