[1] Zhao Q, Sun Q, Xin S, et al. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process[J]. Materials Science and Engineering A, 2022, 845: 143260. [2] 吴 晨, 马保飞, 肖松涛, 等. 航天紧固件用TC4钛合金棒材固溶时效后的组织与性能[J]. 金属热处理, 2021, 46(11): 166-169. Wu Chen, Ma Baofei, Xiao Songtao, et al. Microstructure and properties of TC4 titanium alloy bar for aerospace fasteners after solid solution treatment and aging[J]. Heat Treatment of Metals, 2021, 46(11): 166-169. [3] Hu S, Tan Y B, Shi W, et al. Microstructure, texture evolution and mechanical behavior of Ti-3.5Al-5Mo-4V titanium alloy during hot rolling in a β field[J]. Materials Today Communications, 2022, 31: 103506. [4] Zhou W, Wang C, Liu J, et al. Ageing precipitation sequence and effect of ω and secondary α phases on tensile properties of metastable β Ti-6Cr-5Mo-5V-4Al alloy[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(6): 1742-1754. [5] Li C, Huang L, Zhao M, et al. Characterization of hot workability of Ti-6Cr-5Mo-5V-4Al alloy based on hot processing map and microstructure evolution[J]. Journal of Alloys and Compounds, 2022, 905: 164161. [6] Cao S, Zhou X, Lim C V S, et al. A strong and ductile Ti-3Al-8V-6Cr-4Mo-4Zr(Beta-C)alloy achieved by introducing trace carbon addition and cold work[J]. Scripta Materialia, 2020, 178: 124-128. [7] 韩伟松, 朱宝辉, 李建锋, 等. 热处理对Ti-38644钛合金棒材组织和性能的影响[J]. 金属热处理, 2022, 47(10): 185-190. Han Weisong, Zhu Baohui, Li Jianfeng, et al. Effect of heat treatment on microstructure and properties of Ti-38644 titanium alloy bar[J]. Heat Treatment of Metals, 2022, 47(10): 185-190. [8] 任德春, 苏虎虎, 张慧博, 等. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488. Ren Dechun, Su Huhu, Zhang Huibo, et al. Effect of cold rotary-swaging deformation on microstructure and tensile properties of TB9 titanium alloy[J]. Acta Metallurgica Sinica, 2019, 55(4): 480-488. [9] 童晋方, 冯治国, 江玉莲, 等. TB9钛合金芯杆冷镦成形模拟及实验研究[J]. 锻压技术, 2023, 48(8): 32-40. Tong Jinfang, Feng Zhiguo, Jiang Yulian, et al. Simulation and test study on cold heading for TB9 titanium alloy core rod[J]. Forging and Stamping Technology, 2023, 48(8): 32-40. [10] Fan J, Kou H, Lai M, et al. High temperature discontinuous yielding in a new near β titanium alloy Ti-7333[J]. Rare Metal Materials and Engineering, 2014, 43(4): 808-812. [11] 王哲君, 强洪夫, 王学仁. 发生不连续屈服的钛合金高温变形研究进展[J]. 中国有色金属学报, 2012, 22(7): 1904-1913. Wang Zhejun, Qiang Hongfu, Wang Xueren. Research and development progress of high temperature deformation of titanium alloy with discontinuous yielding[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(7): 1904-1913. [12] Chen Z, Xu L, Cao S, et al. Characterization of hot deformation and microstructure evolution of a new metastable β titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(5): 1513-1529. [13] Liu Q, Hui S, Tong K, et al. Investigation of high temperature behavior and processing map of Ti-6Al-4V-0.11Ru titanium alloy[J]. Journal of Alloys and Compounds, 2019, 787: 527-536. [14] 张书铭, 林博超, 辛社伟, 等. 亚稳β钛合金Ti-1500热变形行为[J]. 金属热处理, 2023, 48(5): 158-165. Zhang Shuming, Lin Bochao, Xin Shewei, et al. Hot deformation behavior of metastable β-titanium alloy Ti-1500[J]. Heat Treatment of Metals, 2023, 48(5): 158-165. [15] Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10): 1883-1892. [16] Li Chenwei, Xie Hui, Mao Xiaonan, et al. High temperature deformation of TC18 titanium alloy[J]. Rare Metal Materials and Engineering, 2017, 46(2): 326-332. [17] Li C, Huang L, Zhao M, et al. Hot deformation behavior and mechanism of a new metastable β titanium alloy Ti-6Cr-5Mo-5V-4Al in single phase region[J]. Materials Science and Engineering A, 2021, 814: 141231. |