[1] Dai Hailong, Shi Shouwen, Yang Lin, et al. Effects of elemental composition and microstructure inhomogeneity on the corrosion behavior of nickel-based alloys in hydrofluoric acid solution[J]. Corrosion Science, 2020, 176: 108917. [2] 李重阳, 龚 燚, 刘时兵, 等. 镍基高温合金的发展综述[C]//2020中国铸造活动周论文集. 2020: 1-5. [3] 王会阳, 安云岐, 李承宇, 等. 镍基高温合金材料的研究进展[J]. 材料导报, 2011, 25(S2): 482-486. Wang Huiyang, An Yunqi, Li Chengyu, et al. Research progress of Ni-based superalloys[J]. Materials Review, 2011, 25(S2): 482-486. [4] Sun Baode, Wang Jun, Kang Maodong, et al. Investment casting technology and development trend of superalloy ultra limit components[J]. Acta Metallurgica Sinica, 2022, 58(4): 412-27. [5] 王 睿. 镍基高温合金的研究和应用[J]. 当代化工研究, 2017(7): 50-51. Wang Rui. Research and application of nickel-based high temperature alloy[J]. Modern Chemical Research, 2017(7): 50-51. [6] 王瀚艺, 卢嘉铮, 贺 强. 航空发动机SiCf/SiC复合材料与环境障涂层系统及制备技术研究进展[J]. 复合材料科学与工程, 2022(9): 109-123. Wang Hanyi, Lu Jiazheng, He Qiang. Research progress on SiCf/SiC composite and environmental barrier coating system and preparation technology for aeroengine[J]. Composites Science and Engineering, 2022(9): 109-123. [7] 王 君. 镍基高温合金在航空发动机中的应用[J]. 中国新通信, 2019, 21(1): 221-222. Wang Jun. Application of nickel based high-temperature alloys in aircraft engines[J]. China New Telecommunications, 2019, 21(1): 221-222. [8] 裴烈勇, 戴爱丽, 樊开伦, 等. 时效与滚丝工艺顺序对GH738合金螺栓力学性能的影响[J]. 金属热处理, 2020, 45(12): 140-141. Pei Lieyong, Dai Aili, Fan Kailun, et al. Effects of aging and thread rolling process sequence on mechanical properties of GH738 alloy bolt[J]. Heat Treatment of Metals, 2020, 45(12): 140-141. [9] 田沛玉. GH738合金晶粒组织与力学性能的关联性[J]. 山东工业技术, 2017(11): 41-42. [10] 马文彬, 赵子华, 骆红云, 等. 高温合金GH738超高周疲劳行为研究[J]. 金属热处理, 2019, 44(S1): 630-633. Ma Wenbing, Zhao Zihua, Luo Hongyun, et al. Very high cycle fatigue behavior of superalloy GH738[J]. Heat Treatment of Metals, 2019, 44(S1): 630-633. [11] 陈 喜, 王小宇, 刘 奇, 等. 镍基高温合金球形粉末制备发展现状[J]. 粉末冶金工业, 2022, 32(2): 96-100. Chen Xi, Wang Xiaoyu, Liu Qi, et al. Development status of the preparation of nickel-based superalloy spherica powder[J]. Powder Metallurgy Industry, 2022, 32(2): 96-100. [12] Podany P, Novy Z, Dlouhy J. Recrystallization behaviour of a nickel-based superalloy[J]. Materiali in Tehnologije, 2016, 50(2): 199-205. [13] Kim H, Oh H, Bae H J, et al. Effect of heat treatment conditions on the plastic deformation behavior of the Inconel 706 alloy[J]. Journal of Materials Research and Technology, 2022, 21: 2145-2155. [14] Liu H, Zhang M, Xu M, et al. Microstructure evolution dependence of work-hardening characteristic in cold deformation of a difficult-to-deform nickel-based superalloy[J]. Materials Science and Engineering A, 2020, 800: 140280. [15] 董建新. 高温合金GH4738及应用[M]. 北京: 冶金工业出版社, 2014. [16] 于晓华, 王 远, 詹肇麟, 等. 晶格畸变能的尺寸效应[J]. 北京工业大学学报, 2014, 40(6): 928-931. Yu Xiaohua, Wang Yuan, Zhan Zhaolin, et al. Size effect of the lattice distortion energy of nanoparticle[J]. Journal of Beijing University of Technology, 2014, 40(6): 928-931. [17] 丁雨田, 张 霞, 高钰璧, 等. “γ′相+孪晶”复合结构对高温合金强度及塑性的影响[J]. 稀有金属材料与工程, 2022, 51(10): 3732-3742. Ding Yutian, Zhang Xia, Gao Yubi, et al. Effect of “γ′ phase and twin” composite structure on strength and plasticity of superalloy[J]. Rare Metal Materials and Engineering, 2022, 51(10): 3732-3742. [18] 周 宣, 李宇力, 马腾飞, 等. FGH97合金连续冷却过程中γ′相的析出行为[J]. 稀有金属材料与工程, 2020, 49(6): 2147-2153. Zhou Xuan, Li Yuli, Ma Tengfei, et al. Precipitation behavior of γ′ in superalloy FGH97 during continuous cooling from supersolvus temperature[J]. Rare Metal Materials and Engineering, 2020, 49(6): 2147-2153. [19] Li Yefan, Li Chong, Yu Liming, et al. Characterization of γ′ precipitate and γ/γ′ interface in polycrystalline Ni3Al-based superalloys[J]. Vacuum, 2020, 41(176): 109-310. [20] 孙晶霞, 刘金来, 陈 超, 等. γ′相尺寸对一种含Re单晶镍基高温合金中温持久性能的影响[J]. 稀有金属材料与工程, 2022, 51(2): 369-373. Sun Jingxia, Liu Jinlai, Chen Chao, et al. Effect of γ′ size on intermediate temperature stress rupture property of the third generation single crystal nickel-base superalloy containing Re[J]. Rare Metal Materials and Engineering, 2022, 51(2): 369-373. [21] 郭浩坤, 罗 皎, 张志刚. GH4175合金固溶过程中γ相晶粒长大与γ′相回溶规律研究[J]. 精密成形工程, 2022, 14(4): 28-37. Guo Haokun, Luo Jiao, Zhang Zhigang. Grain growth behaviors of γ phase and Re-dissolution of γ′ phase during solution treatment of GH4175 alloy[J]. Journal of Netshape Forming Engineering, 2022, 14(4): 28-37. [22] 王 涛. 冷轧变形诱导“孪晶+γ′相”强化的镍基变形高温合金强韧化研究[D]. 兰州: 兰州理工大学, 2023. [23] 赵英利, 裴建明, 陈 雷, 等. 高氮奥氏体不锈钢组织调控及加工硬化机制[J]. 材料热处理学报, 2018, 39(3): 58-64. Zhao Yingli, Pei Jianming, Chen Lei, et al. Microstructure regulation and work hardening mechanism of high nitrogen austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2018, 39(3): 58-64. [24] 宋仁伯, 项建英, 侯东坡. 316L不锈钢冷变形加工硬化机制及组织特征[J]. 北京科技大学学报, 2013, 35(1): 55-60. Song Renbo, Xiang Jianying, Hou Dongpo. Microstructure characteristics and work-hardening mechanism of 316L austenitic stainless steel during cold deformation[J]. Journal of University of Science and Technology Beijing, 2013, 35(1): 55-60. |