[1] 李照国, 王 珂, 纪显彬, 等. 回火温度对00Cr13Ni5Mo超级马氏体不锈钢组织及性能的影响[J]. 金属热处理, 2021, 46(5): 95-99. Li Zhaoguo, Wang Ke, Ji Xianbin, et al. Effect of tempering temperature on microstructure and properties of 00Cr13Ni5Mo super martensitic stainless steel[J]. Heat Treatment of Metals, 2021, 46(5): 95-99. [2] Heo N H. Ductile-brittle-ductile transition and grain boundary segregation of Mn and Ni in an Fe-6Mn-12Ni alloy[J]. Scripta Materialia, 1996, 34(10): 1517. [3] 王飞云, 金建军, 江志华, 等. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160. Wang Feiyun, Jin Jianjun, Jiang Zhihua, et al. Effect of heat treatment temperature on microstructure and properties of new maraging stainless steel[J]. Journal of Material Engineering, 2019, 47(6): 152-160. [4] 刘永宝, 周丽娜, 刘 明, 等. 回火参数对G95Cr18马氏体不锈钢显微组织及力学性能的影响[J]. 金属热处理, 2023, 48(7): 103-111. Liu Yongbao, Zhou Lina, Liu Ming, et al. Effect of tempering parameters on microstructure and mechanical properties of G95Cr18 martensitic stainless steel[J]. Heat Treatment of Metals, 2023, 48(7): 103-111. [5] 宋逸思, 李传维, 陈益华, 等. 0Cr16Ni5Mo1马氏体不锈钢的连续冷却相变动力学[J]. 金属热处理, 2021, 46(10): 12-17. Song Yisi, Li Chuanwei, Chen Yihua, et al. Transformation kinetics of 0Cr16Ni5Mo1 martensitic stainless steel during continuous cooling[J]. Heat Treatment of Metals, 2021, 46(10): 12-17. [6] Bilmes P D, Solari M, Llorente C L. Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals[J]. Materials Characterization, 2001, 46(4): 285-296. [7] 庞 阳, 邹德宁, 李雨浓, 等. 氮对淬火-配分超级马氏体不锈钢组织和性能的影响[J]. 材料研究学报, 2022, 36(10): 786-792. Pang Yang, Zou Dening, Li Yunong, et al. Effect of nitrogen on microstructure and properties of quenched and partitioned super martensitic stainless steel[J]. Chinese Journal of Materials Research, 2022, 36(10): 786-792. [8] Zhao Y, Liu W, Fan Y, et al. Influence of microstructure on the corrosion behavior of super 13Cr martensitic stainless steel under heat treatment[J]. Materials Characterization, 2021, 175: 111066. [9] 李苗苗, 邹德宁, 佟立波, 等. N含量对13Cr超级马氏体不锈钢耐蚀性的影响[J]. 金属热处理, 2021, 46(12): 107-112. Li Miaomiao, Zou Dening, Tong Libo, et al. Effect of N content on corrosion resistance of 13Cr super-martensitic stainless steel[J]. Heat Treatment of Metals, 2021, 46(12): 107-112. [10] Zou X, Niu B, Pan L, et al. Wire arc additive manufacturing and heat treatment of super martensitic stainless steel with a refined microstructure and excellent mechanical properties[J]. Materials, 2022, 15(7): 2624. [11] Zhang Y, Yin Y, Li D, et al. Temperature dependent phase transformation kinetics of reverted austenite during tempering in 13Cr super martensitic stainless steel[J]. Materials, 2019, 9(11): 1203. [12] Song Y Y, Li X Y, Rong L J, et al. The influence of tempering temperature on the reversed austenite formation and tensile properties in Fe-13%Cr-4%Ni-Mo low carbon martensite stainless steels[J]. Materials Science and Engineering A, 2011, 528(12): 4075-4079. [13] Song Y Y, Li X Y, Rong L J, et al. Formation of the reversed austenite during intercritical tempering in a Fe-13%Cr-4%Ni-Mo martensitic stainless steel[J]. Materials Letters, 2010, 64(13): 1411-1414. [14] Song Y Y, Li X Y, Rong L J, et al. Reversed austenite in 0Cr13Ni4Mo martensitic stainless steel[J]. Materials Chemistry and Physics, 2014, 143(2): 728-734. [15] Han J, Lee Y K. The effects of the heating rate on the reverse transformation mechanism and the phase stability of reversed austenite in medium Mn steels[J]. Acta Materialia, 2014, 67: 354-361. [16] Zheng S Q, Jiang W, Bai X, et al. Effect of deep cryogenic treatment on formation of reversed austenite in super martensitic stainless steel[J]. Journal of Iron and Steel Research International, 2015, 22(5): 451-456. [17] Liu W Y, Chen Y Q, Huang Z J. Typical application of Formastor-F Automatic Phase change meter[C]//Chinese Society of Metals. Proceedings of the 11th China Iron and Steel Annual Conference-S17. Metallurgical Equipment and Engineering Technology. Metallurgical Industry Press, 2017: 5. [18] Zhang X G, Miyamoto G, Kaneshita T, et al. Growth mode of austenite during reversion from martensite in Fe-2Mn-1.5Si-0.3 alloy: A transition in linetics and morphology[J]. Acta Materialia, 2018, 154: 1-13. [19] 姜 雯. 超级马氏体不锈钢组织性能及逆变奥氏体机制的研究[D]. 昆明: 昆明理工大学, 2014. Jiang Wen. Research on microstructures and properties in super martensitic stainless steel and formation mechanism of reversed austenite[D]. Kunming: Kunming University of Science and Technology, 2014. [20] 李开颜. 热处理工艺对00Cr13Ni5Mo超级马氏体不锈钢组织和性能的影响[D]. 太原: 中北大学, 2023. Li Kaiyan. Influence of heat treatment on microstructure and properties of 00Cr13Ni5Mo super martensitic stainless steel[D]. Taiyuan: North University of China, 2023. [21] 宋元元. 0Cr13Ni4Mo不锈钢中逆变奥氏体的相变机制[D]. 北京: 中国科学院大学, 2011. Song Yuanyuan. Transformation mechanism of reversed austenite in 0Cr13Ni4Mo stainless steel[D]. Beijing: University of Chinese Academy of Sciences, 2011. [22] Hadadzadeh A, Shahriari A, Amirkhiz B S, et al. Additive manufacturing of an Fe-Cr-Ni-Al maraging stainless steel: Microstructure evolution, heat treatment, and strengthening mechanisms[J]. Materials Science and Engineering A, 2020, 787: 139470. [23] Yan S, Liu X H, Liang T S, et al. The effects of the initial microstructure on microstructural evolution, mechanical properties and reversed austenite stability of intercritically annealed Fe-6.1Mn-1.5Si-0.12C steel[J]. Materials Science and Engineering A, 2018(712): 332-340. [24] 田 伟, 潘 伟, 钟庆元. 0Cr16Ni5Mo马氏体不锈钢δ-铁素体含量及奥氏体晶粒度的控制[J]. 金属热处理, 2022, 47(9): 194-201. Tian Wei, Pan Wei, Zhong Qingyuan. Control of δ-ferrite content and austenite grain size in 0Cr16Ni5Mo martensite stainless steel[J]. Heat Treatment of metals, 2022, 47(9): 194-201. [25] Song Y, Li C, Liao Y, et al. Effects of tempering temperature on the microstructure evolution and mechanical properties of 16%Cr-5%Ni super martensitic stainless steel[J]. Journal of Materials Research and Technology, 2023, 24: 9306-9322. [26] Liu J, Zhang L, Song L, et al. Dislocation assisted face-centered-cubic/body-centered-cubic interface mixing during severe plastic deformation[J]. Journal of Alloys and Compounds, 2014, 586: 16-21. [27] Jiang W, Zhao K, Ye D, et al. Effect of heat treatment on reversed austenite in Cr15 super martensitic stainless steel[J]. Journal of Iron and Steel Research International, 2013, 20(5): 61-65. [28] He J, Chen L, Tao X, et al. Hydrogen embrittlement behavior of 13Cr-5Ni-2Mo super martensitic stainless steel[J]. Corrosion Science, 2020, 176: 109046. [29] Ma X P, Wang L J, Liu C M, et al. Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel[J]. Materials Science and Engineering A, 2012, 539: 271-279. [30] Ma X P, Wang L J, Qin B, et al. Effect of N on microstructure and mechanical properties of 16Cr5Ni1Mo martensitic stainless steel[J]. Materials & Design, 2012, 34: 74-81. [31] Qin B, Wang Z Y, Sun Q S. Effect of tempering temperature on properties of 00Cr16Ni5Mo stainless steel[J]. Materials Characterization, 2008, 59(8): 1096-1100. [32] Kumar B S, Kain V, Singh M, et al. Influence of hydrogen on mechanical properties and fracture of tempered 13wt% Cr martensitic stainless steel[J]. Materials Science and Engineering A, 2017, 700: 140-151. [33] Ran J Q, Fu M W, Chan W L. The influence of size effect on the ductile fracture in micro-scaled plastic deformation[J]. International Journal of Plasticity, 2013, 41: 65-81. [34] Xu D K, Liu Y C, Ma Z Q, et al. Structural refinement of 00Cr13Ni5Mo2 super martensitic stainless steel during single-stage intercritical tempering[J]. International Journal of Minerals, Metallurgy, and Materials, 2014, 21: 279-288. |