[1] Fujimitsu M. History of power plants and progress in heat resistant steels[J]. ISIJ International, 2001, 41(6): 612-625. [2] Sklenicka V, Kucharova K, Svobodova M, et al. The effect of a prior short-term ageing on mechanical and creep properties of P92 steel[J]. Materials Characterization, 2018, 136: 388-397. [3] Jin X, Zhu B, Li Y, et al. Effect of the microstructure evolution on the high-temperature strength of P92 heat-resistant steel for different service times[J]. International Journal of Pressure Vessels and Piping, 2020, 186: 104-131. [4] 王敬忠, 刘正东, 包汉生, 等. 中国超超临界电站锅炉关键材料用钢及合金的研究现状[J]. 钢铁, 2015, 50(8): 1-9, 23. Wang Jingzhong, Liu Zhengdong, Bao Hansheng, et al. Study of steel and alloys for ultra-supercritical power plant in China[J]. Iron and Steel, 2015, 50(8): 1-9, 23. [5] 迟成宇, 于鸿垚, 谢锡善. 600 ℃超超临界电站锅炉过热器及再热器管道用先进奥氏体耐热钢的研究与发展[J]. 世界钢铁, 2012, 12(4): 50-65. Chi Chengyu, Yu Hongyao, Xie Xishan. Research and development of austenitic heat-resistant steels for 600 ℃ superheat/reheater tubes of USC power plant boilers[J]. World Iron and Steel, 2012, 12(4): 50-65. [6] 雷丙旺, 李永清, 庞海平, 等. 新型马氏体耐热钢G115大口径厚壁无缝钢管制造技术[J]. 金属功能材料, 2020, 27(5): 14-19. Lei Bingwang, Li Yongqing, Pang Haiping, et al. Manufacturing technology of novel heat resistant steel G115 large-diameter heavy wall seamless pipe[J]. Metallic Functional Materials, 2020, 27(5): 14-19. [7] 刘正东, 陈正宗, 何西扣, 等. 630~700 ℃超超临界燃煤电站耐热管及其制造技术进展[J]. 金属学报, 2020, 56(4): 539-548. Liu Zhengdong, Chen Zhengzong, He Xikou, et al. Systematical innovation of heat resistant materials used for 630-700 ℃ advanced ultra-supercritical(A-USC)fossil fired boilers[J]. Acta Metallurgica Sinica, 2020, 56(4): 539-548. [8] 刘晨曦, 毛春亮, 崔 雷, 等. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(21): 1521-1538. Liu Chenxi, Mao Chunliang, Cui Lei, et al. Recent progress in microstructural control and solid-state welding of reduced activation ferritic/martensitic steels[J]. Acta Metallurgica Sinica, 2021, 57(21): 1521-1538. [9] 文新理, 章清泉, 陈 列, 等. 650 ℃第三代超超临界锅炉管候选钢种的化学成分研究现状[J]. 材料导报, 2018, 32(13): 2167-2175. Wen Xinli, Zhang Qingquan, Chen Lie, et al. A state-of-the-art review of chemical component study of the candidate steel for 650 ℃ ultra-supercritical boiler tube[J]. Materials Reports, 2018, 32(13): 2167-2175. [10] Helis L, Toda Y, Hara T, et al. Effect of cobalt on the microstructure of tempered martensitic 9Cr steel for ultra-supercritical power plants[J]. Materials Science and Engineering A, 2009, 510-511: 88-94. [11] Faulkner R G, Williams J A, Sanchez E G, et al. Influence of Co, Cu and W on microstructure of 9%Cr steel weld metals[J]. Materials Science and Technology, 2003, 19: 347-354. [12] Wang H, Yan W, Van Zwaag S, et al. On the 650 ℃ thermostability of 9-12Cr heat resistant steels containing different precipitates[J]. Acta Materialia, 2017, 134: 143-154. [13] Xu Y T, Nie Y H, Wang M J, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging[J]. Acta Materialia, 2017, 131: 110-122. [14] Xiao B, Xu L Y, Zhao L, et al. Creep properties, creep deformation behavior, and microstructural evolution of 9Cr-3W-3Co-1CuVNbB martensite ferritic steel[J]. Materials Science and Engineering A, 2018, 711: 434-447. |