[1] 刘 倩, 郑小平, 张荣华, 等. 新型汽车用高强度中锰钢研究现状及发展趋势[J]. 材料导报, 2019, 33(7): 1215-1220. Liu Qian, Zheng Xiaoping, Zhang Ronghua, et al. Medium manganese high strength steel for automotive application: Status quo and prospects[J]. Materials Reports, 2019, 33(7): 1215-1220. [2] Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-A1-C low density steels[J]. Progress in Materials Science, 2017, 89: 345-351. [3] 白韶斌, 牛伟强, 肖文涛, 等. 中锰钢的研究进展及未来研究展望[J]. 热加工工艺, 2022, 51(14): 1-9. Bai Shaobin, Niu Weiqiang, Xiao Wentao, et al. Research progress and future research prospect of medium Mn steels[J]. Hot Working Technology, 2022, 51(14): 1-9. [4] Bouaziz O, Zurob H, Huang M. Driving force and logic of development of advanced high strength steels for automotive applications[J]. Steel Research International, 2013, 84(10): 937-947. [5] Emmanuel M D, Glover Alexandra G, Mueller Josh J, et al. Processing, properties, and microstructure interrelationships in medium manganese steels[J]. BHM Berg-und Hüttenmännische Monatshefte, 2022, 167(11): 522-525. [6] 赵彦乐, 邹宇明, 丁 桦. C含量对冷轧Fe-6Mn-1Al中锰钢组织与性能的影响[J]. 金属热处理, 2022, 47(2): 35-40. Zhao Yanle, Zou Yuming, Ding Hua. Effect of C content on microstructure and mechanical properties of cold-rolled Fe-6Mn-1Al medium manganese steel[J]. Heat Treatment of Metals, 2022, 47(2): 35-40. [7] Kang S, Yan L, Yan X, et al. Effect of chloride ion concentration on stress corrosion cracking and electrochemical corrosion of high manganese steel[J]. High Temperature Materials and Processes, 2022, 41(1): 389-402. [8] 张 楠. Al微合金化中锰钢力学性能研究及退火前原始组织控制[D]. 包头: 内蒙古科技大学, 2022. Zhang Nan. Study on mechanical properties and control of original structure before annealing of Al microalloyed medium manganese steel[D]. Baotou: Inner Mongolia University of Science and Technology, 2022. [9] Rana R, Moor E D, Speer J G, et al. Effects of hot band annealing on the mechanical properties of cold-rolled and intercritically annealed medium manganese steels[J]. Metallurgical and Materials Transactions A, 2019, 50(9): 4016-4020. [10] Sarmast-Ghahfarokhi S, Zhang S, Midawi A R H, et al. Mechanical properties and failure behavior of resistance spot welded medium-Mn steel under static and quasi-static shear-tension loading[J]. Welding in the World, 2022, 66(8): 1609-1622. [11] 董航宇. 超高强度双相钢中残留奥氏体的调控及其对机械性能的影响[D]. 武汉: 武汉科技大学, 2018. Dong Hangyu. Regulation of retained austenite in ultra-high strength dual-phase steel and its effect on mechanical properties[D]. Wuhan: Wuhan University of Science and Technology, 2018. [12] 齐祥羽, 严 玲, 李广龙, 等. 逆转变奥氏体稳定性对中锰钢强韧性的影响[J]. 金属热处理, 2021, 46(9): 205-210. Qi Xiangyu, Yan Ling, Li Guanglong, et al. Effect of reversed austenite stability on strength and toughness of medium-Mn steel[J]. Heat Treatment of Metals, 2021, 46(9): 205-210. [13] Cai H Z, Zhang M K, Jing Y S, et al. Influence of nickel on microstructure and mechanical properties of medium-manganese steels[J]. Materials Science and Technology, 2019, 35(1): 68-76. [14] 张 磊, 吴泽启, 王存宇, 等. 奥氏体量及预应变量对0.1C-4.98Mn中锰钢力学性能的影响[J]. 特殊钢, 2021, 42(4): 71-74. Zhang Lei, Wu Zeqi, Wang Cunyu, et al. Effect of austenite volume and pre-strain on the mechanical properties of 0.1C-4.98Mn medium manganese steel[J]. Special Steel, 2021, 42(4): 71-74. [15] 贾 涓, 江 萱, 蒋建江, 等. 淬火配分时间对一种中锰钢耐磨性的影响[J]. 金属热处理, 2023, 48(5): 270-274. Jia Juan, Jiang Xuan, Jiang Jianjiang, et al. Effect of quenching-partition time on wear resistance of a medium manganese steel[J]. Heat Treatment of Metals, 2023, 48(5): 270-274. [16] Liang X K, Fu H, Cui M, et al. Effect of intercritical tempering temperature on microstructure evolution and mechanical properties of high strength and toughness medium manganese steel[J]. Materials, 2022, 15(6): 2162-2162. [17] 余海燕, 陈关龙, 李淑慧, 等. 不同应变方式下TRIP钢中残余奥氏体的体积分数随应变量的变化[J]. 钢铁研究学报, 2005, 17(2): 48-51, 78. Yu Haiyan, Chen Guanlong, Li Shuhui, et al. Change of volume fraction of austenite with strain in TRIP steel[J]. Journal of Iron and Steel Research, 2005, 17(2): 48-51, 78. [18] 蔡志辉, 张德良, 周彦君, 等. 应变速率对Fe-11Mn-2Al-0.2C中锰钢变形行为的影响[J]. 东北大学学报(自然科学版), 2020, 41(7): 1041-1047. Cai Zhihui, Zhang Deliang, Zhou Yanjun, et al. Effect of strain rate on deformation behavior of Fe-11Mn-2Al-0.2C medium-Mn steel[J]. Journal of Northeastern University(Natural Science Edition), 2020, 41(7): 1041-1047. [19] 李 楠, 时 捷, 王存宇, 等. 两相区退火时间对冷轧中锰钢组织和力学性能的影响[J]. 材料热处理学报, 2011, 32(8): 74-78. Li Nan, Shi Jie, Wang Cunyu, et al. Effect of annealing time on microstructure and mechanical properties of a cold rolled medium manganese steel[J]. Transactions of Materials and Heat Treatment, 2011, 32(8): 74-78. [20] 张献光, 宫本吾郎, 古原忠. 加热速率对逆转变奥氏体微观组织的影响[J]. 钢铁, 2019, 54(2): 83-89. Zhang Xianguang, Miyamoto Goro, Gu Yuanzhong. Effects of heating rate on microstructure of reverted austenite[J]. Iron and Steel, 2019, 54(2): 83-89. [21] Li Z C, Li X J, Mou Y J, et al. Effect of Q&P and Q&T treatments on the stability of austenite and mechanical properties of steel 0.2%C-8.5%Mn-3.0%Al[J]. Metal Science and Heat Treatment, 2023, 64(9-10): 539-546. [22] Li Z C, Ding H, Misra R D K, et al. Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: The effect of austenite-reverted transformation and quenching-tempering treatments[J]. Materials Science and Engineering A, 2017, 682: 211-219. [23] 李帅帅, 王 昕, 贾建文, 等. 淬火处理对中锰钢组织和性能的影响[J]. 材料热处理学报, 2024, 45(1): 123-130. Li Shuaishuai, Wang Xin, Jia Jianwen, et al. Effect of quenching treatment on microstructure and properties of medium-Mn steel[J]. Transactions of Materials and Heat Treatment, 2024, 45(1): 123-130. [24] Zhao Y, Yang D C, Yin X D, et al. 0.1C-11Mn medium manganese steel treated by quenching and tempering process[J]. Materials Science and Technology, 2022, 38: 1490-1500. [25] 王亚婷, 万德成, 冯树明, 等. 淬火温度对中锰QP钢组织和性能的影响[J]. 金属热处理, 2020, 45(5): 172-176. Wang Yating, Wan Decheng, Feng Shuming, et al. Effect of quenching temperature on microstructure and mechanical properties of medium manganese QP steel[J]. Heat Treatment of Metals, 2020, 45(5): 172-176. |