[1] Ding H, Liu D, Cai M, et al. Austenite-based Fe-Mn-Al-C lightweight steels: Research and prospective[J]. Metals, 2022, 12(10): 1572. [2] Li J J, Song R B, Li X, et al. Microstructural evolution and tensile properties of 70 GPa·% grade strong and ductile hot-rolled 6Mn steel treated by intercritical annealing[J]. Materials Science and Engineering A, 2019, 745: 212. [3] Kim H, Suh D W, Kim N J. Fe-Al-Mn-C lightweight structural alloys: A review on the microstructures and mechanical properties[J]. Science and Technology of Advanced Materials, 2013, 14(1): 014205. [4] Cao W Q, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe-0.2C-5Mn steel processed by ART-annealing[J]. Materials Science and Engineering A, 2011, 528(22/23): 6661-6666. [5] Wang H, Wang C, Liang J, et al. Effect of alloying content on microstructure and mechanical properties of Fe-Mn-Al-C low-density steels[J]. Materials Science and Engineering A, 2023, 886: 145675. [6] 杨富强, 宋仁伯, 孙 挺, 等. Fe-Mn-Al轻质高强钢组织和力学性能研究[J]. 金属学报, 2014, 50(8): 897-904. Yang Fuqiang, Song Renbo, Sun Ting, et al. Microstructure and mechanical properties of Fe-Mn-Al light-weight high-strength steel[J]. Acta Metallurgica Sinica, 2014, 50(8): 897-904. [7] Peng W, Yang Z, Jia G D, et al. Distinct oxidation behaviour attributed to phase constitution transformation at different hot processing temperatures in Fe-10Mn-5.5Al-0.25C steel[J]. Corrosion Science, 2019, 150(4): 235-245. [8] 邢 梅, 林方敏, 唐立志, 等. Al元素对Fe-Mn-Al-C系低密度钢的影响特性综述[J]. 中国冶金, 2022, 32(2): 15-26. Xing Mei, Lin Fangmin, Tang Lizhi, et al. Effect of Al on properties of Fe-Mn-Al-C low density steel[J]. China Metallurgy, 2022, 32(2): 15-26. [9] Rawat P, Prakash U, Prasad V V S. Phase transformation and hot working studies on high-Al Fe-Al-Mn-C ferritic low-density steels[J]. Journal of Materials Engineering and Performance, 2021, 30(8): 6297-6308. [10] 章小峰, 冷德平, 张 龙, 等. Al含量对Fe-Mn-Al-C系低密度钢层错能及形变孪晶的影响[J]. 材料热处理学报, 2015, 36(12): 128-133. Zhang Xiaofeng, Leng Deping, Zhang Long, et al. Influence of aluminum content on stacking fault energy and mechanical twin of low-density Fe-Mn-Al-C steels[J]. Transactions of Materials and Heat Treatment, 2015, 36(12): 128-133. [11] 满廷慧, 彭 伟, 王子波, 等. Fe-Mn-Al-C低密度钢研究现状及展望[J]. 中国冶金, 2022, 32(1): 11-20. Man Tinghui, Peng Wei, Wang Zibo, et al. Research progress and prospect of Fe-Mn-Al-C low-density steels[J]. China Metallurgy, 2022, 32(1): 11-20. [12] 马 涛, 李慧蓉, 高建新, 等. 合金元素及时效处理对Fe-Mn-Al-C低密度钢中κ-碳化物的影响特性综述[J]. 材料导报, 2020, 34(11): 11153-11161. Ma Tao, Li Huirong, Gao Jianxin, et al. Effect of alloying elements and aging treatment on the properties of κ-carbide in Fe-Mn-Al-C low density steels: A review[J]. Materials Reports, 2020, 34(11): 11153-11161. [13] Sato K, Tagawa K, Inoue Y. Spinodal decomposition and mechanical properties of an austenitic Fe-30wt.%Mn-9wt.%Al-0.9wt.%C alloy[J]. Materials Science and Engineering A, 1989, 111: 45-50. [14] Liu L, He B, Huang M. Processing-microstructure relation of deformed and partitioned(D&P)steels[J]. Metals, 2019, 9(6): 9060695. [15] 周云霄. 时效处理对Fe-Mn-Al-C低密度钢析出相和力学性能的影响[D]. 重庆: 重庆大学, 2021. Zhou Yunxiao. Effects of aging treatment on microstructure and properties of Fe-Mn-Al-C low density steel[D]. Chongqing: Chongqing University, 2021. [16] Chen P, Zhang F, Zhang Q C, et al. Precipitation behavior of κ-carbides and its relationship with mechanical properties of Fe-Mn-Al-C lightweight austenitic steel[J]. Journal of Materials Research and Technology, 2023, 25: 3780-3788. [17] Chen P, Li X, Yi H. The κ-carbides in low-density Fe-Mn-Al-C steels: A review on their structure, precipitation and deformation mechanism[J]. Metals, 2020, 10(8): 10081021. [18] Mapelli C, Barella S, Gruttadauria A, et al. γ decomposition in Fe-Mn-Al-C lightweight steels[J]. Journal of Materials Research and Technology, 2020, 9(3): 4604-4616. [19] Ding H, Li H Y, Devesh Kumar Misra R, et al. Strengthening mechanisms in low density Fe-26Mn-xAl-1C steels[J]. Steel Research International, 2017, 89(9): 1700381. [20] Banis A, Gomez A, Bliznuk V, et al. Microstructure evolution and mechanical behavior of Fe-Mn-Al-C low-density steel uponaging[J]. Materials Science and Engineering A, 2023, 875: 145109. [21] Liu D, Cai M, Ding H, et al. Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel[J]. Materials Science and Engineering A, 2017, 715: 25-32. [22] Han S Y, Shin S Y, Lee H J, et al. Effects of annealing temperature on microstructure and tensile properties in ferritic lightweight steels[J]. Metallurgical and Materials Transactions A, 2012, 43(3): 843-853. [23] 陈兴品, 李文佳, 任 平, 等. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957. Chen Xingpin, Li Wenjia, Ren Ping, et al. Effects of C content on microstructure and properties of Fe-Mn-Al-C low-density steels[J]. Acta Metallurgica Sinica, 2019, 55(8): 951-957. [24] Moon J, Park S J, Lee C H, et al. Influence of microstructure evolution on hot ductility behavior of austenitic Fe-Mn-Al-C lightweight steels during hot tensile deformation[J]. Materials Science and Engineering A, 2023, 868: 144786. [25] Park K T, Hwang S W, Son C Y, et al. Effects of heat treatment on microstructure and tensile properties of a Fe-27Mn-12Al-0.8C low-density steel[J]. JOM, 2014, 66(9): 1828-1836. [26] Moon J, Park S J, Sung D J, et al. Phase transformation mechanism and hardness during ageing of an austenitic Fe-30Mn-10.5Al-1.1C-3Mo lightweight steel[J]. Journal of Alloys and Compounds, 2019, 804: 511-520. [27] Kang Jun Y, Park S J, Lee J, et al. Effect of aging treatment on microstructure and intrinsic mechanical behavior of Fe-31.4Mn-11.4Al-0.89C lightweight steel[J]. Journal of Alloys and Compounds, 2016, 656: 805-811. [28] Haidemenopoulos G N, Vasilakos A N. On the thermodynamic stability of retained austenite in 4340 steel[J]. Journal of Alloys and Compounds, 1997, 247(1/2): 128-133. [29] 唐 荻, 米振莉, 陈雨来. 国外新型汽车用钢的技术要求及研究开发现状[J]. 钢铁, 2005, 40(6): 1-5. Tang Di, Mi Zhenli, Chen Yulai. Technology and research and development of advanced automobile steel abroad[J]. Iron and Steel, 2005, 40(6): 1-5. [30] 戎咏华, 孟庆平, 何 刚, 等. Fe-Mn合金层错能的嵌入原子法计算[J]. 上海交通大学学报, 2003, 37(2): 171-174. Rong Yonghua, Meng Qingping, He Gang, et al. Calculation of the stacking fault energies of Fe-Mn alloys by embedded atom method[J]. Journal of Shanghai Jiaotong University, 2003, 37(2): 171-174. [31] Speer J G, Streicher A M, Matlock D K, et al. Quenching and partitioning: A fundamentally new process to create high strength trip sheet microstructures[C]//Materials Science and Technology 2003 Meeting. 2003: 9-12. [32] 邓 杰, 宋新莉, 孙新军, 等. 含钛中锰钢淬火-配分组织及力学性能[J]. 钢铁, 2021, 56(6): 103-111. Deng Jie, Song Xinli, Sun Xinjun, et al. Quenching and partitioning microstructure and mechanical properties of medium manganese steel bearing titanium[J]. Iron and Steel, 2021, 56(6): 103-111. [33] Pan H, Zhang J, Li J, et al. The effects of Q&P on microstructures and mechanical properties of a 18CrNiMo7-6 steel[J]. Materials Science and Engineering A, 2022, 861: 144374. [34] 罗 刚, 梁祥祥, 张剑桥, 等. 中断淬火的温度对淬火-配分低铬铁素体不锈钢组织和性能的影响[J]. 上海金属, 2021, 43(5): 45-49. Luo Gang, Liang Xiangxiang, Zhang Jianqiao, et al. Effect of temperatures at the time of quenching interruption on microstructure and properties of a low-chromium ferritic stainless steel quenched and partitioned[J]. Shanghai Metals, 2021, 43(5): 45-49. [35] 梁 亮, 严立新, 邓想涛, 等. 淬火工艺对新型耐蚀耐磨钢的组织和性能的影响[J]. 中国冶金, 2023, 33(5): 9-17. Liang Liang, Yan Lixin, Deng Xiangtao, et al. Effect of quenching process on microstructure and properties of new corrosion and wear resistant steel[J]. China Metallurgy, 2023, 33(5): 9-17. [36] 孙 畅, 李 晶, 李首慧, 等. 淬火工艺对高碳马氏体不锈钢10Cr15MoVCo组织及性能的影响[J]. 中国冶金, 2023, 33(4): 73-80. Sun Chang, Li Jing, Li Shouhui, et al. Effect of quenching process on microstructure and properties of 10Cr15MoVCo high-carbon martensitic stainless steel[J]. China Metallurgy, 2023, 33(4): 73-80. [37] 李俊生, 何 方. 配分温度对于Q&P钢成形性的影响规律[J]. 中国冶金, 2020, 30(7): 41-45. Li Junsheng, He Fang. Influence of partition temperature on formability of Q&P steel[J]. China Metallurgy, 2020, 30(7): 41-45. [38] 史文杰, 魏茂源. 淬火-配分钢中残留奥氏体的演变及其对性能的影响[J]. 金属热处理, 2019, 44(6): 47-50. Shi Wenjie, Wei Maoyuan. Evolution of retained austenite in quenching and partitioning steel and its influence on mechanical properties[J]. Heat Treatment of Metals, 2019, 44(6): 47-50. |