[1] Baburaj E, Kulkarni U, Menon E, et al. CuBe precipitation in Cu-Be alloys[J]. Phase Transitions, 1979, 1(2): 171-197. [2] Tang Y, Kang Y, Liu D, et al. Tuning low cycle fatigue properties of Cu-Be-Co-Ni alloy by precipitation design[J]. Metals, 2018, 8(6): 444. [3] Lomakin I, Castillo-Rodríguez M, Sauvage X. Microstructure, mechanical properties and aging behaviour of nanocrystalline copper-beryllium alloy[J]. Materials Science and Engineering A, 2019, 744: 206-214. [4] 徐志刚, 杨 阳, 杨中娜, 等. 表面强化对随钻测井设备用C17200铍青铜基体组织和性能的影响[J]. 金属热处理, 2023, 48(6): 107-113. Xu Zhigang, Yang Yang, Yang Zhongna, et al. Effect of surface strengthening on microstructure and properties of C17200 beryllium bronze substrate for logging while drilling equipment[J]. Heat Treatment of Metals, 2023, 48(6): 107-113. [5] Yamamoto S, Matsui M, Murakami Y. Electron microscopic observation on the precipitation sequence in Cu-Be alloys[J]. Transactions of the Japan Institute of Metals, 1971, 12(3): 159-165. [6] Proville L, Bakó B. Dislocation depinning from ordered nanophases in a model fcc crystal: From cutting mechanism to Orowan looping[J]. Acta Materialia, 2010, 58(17): 5565-5571. [7] Varschavsky A, Donoso E. A differential scanning calorimetric study of precipitation in Cu-2Be[J]. Thermochimica Acta, 1995, 266: 257-275. [8] 彭丽军, 熊柏青, 解国良, 等. 时效态C17200合金的组织与性能[J]. 中国有色金属学报, 2013, 23(6): 1516-1522. Peng Lijun, Xiong Baiqing, Xie Guoliang, et al. Microstructure and properties of aging C17200 alloy[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(6): 1516-1522. [9] 彭丽军, 熊柏青, 解国良, 等. C17200合金时效早期相变行为[J]. 材料热处理学报, 2013, 34(8): 42-46. Peng Lijun, Xiong Baiqing, Xie Guoliang, et al. Transformation of early stage of aging in C17200 alloy[J]. Transactions of Materials and Heat Treatment, 2013, 34(8): 42-46. [10] Hariram M, Theerath D, Chakravarthy P. Influence of cold work on aging response of C17200-beryllium copper alloy C17200[J]. Materials Today: Proceedings, 2017, 4(10): 11188-11193. [11] Zheng W, Jiang L, Yi Z, et al. Comparison of the mechanical properties and microstructures of QB2.0 and C17200 alloys[J]. Materials, 2022, 15(7): 2570. [12] 常富强, 张哲瑞, 杨 武, 等. 热处理工艺对C17200合金耐磨性的影响[J]. 热加工工艺, 2023, 52(18): 129-131. Chang Fuqiang, Zhang Zherui, Yang Wu, et al. Effect of heat treatment process on wear resistance of C17200 alloy[J]. Hot Working Technology, 2023, 52(18): 129-131. [13] Rioja R, Laughlin D. The sequence of precipitation in Cu-2W/0 Be alloys[J]. Acta Metallurgica, 1980, 28(9): 1301-1313. [14] Zhang H, Jiang Y, Xie J, et al. Precipitation behavior, microstructure and properties of aged Cu-1.7wt%Be alloy[J]. Journal of Alloys and Compounds, 2019, 773: 1121-1130. [15] Tang Y C, Kang Y L, Yue L J, et al. Precipitation behavior of Cu-1.9Be-0.3Ni-0.15Co alloy during aging[J]. Acta Metallurgica Sinica (English Letters), 2015, 28: 307-315. [16] Jovanović M, Djurić B, Drobnjak D, et al. Aging of Cu-Be alloys with and without cobalt[J]. Materials Science and Technology, 1986, 2(2): 122-128. [17] Tsubakino H, Nozato R, Hagiwara H. Discontinuous precipitation in Cu-2.1mass%Be alloy[J]. Transactions of the Japan Institute of Metals, 1981, 22(3): 153-162. [18] Tsubakino H, Nozato R. Discontinuous precipitation in Cu-Be alloys containing cobalt[J]. Journal of the Japan Institute of Metals and Materials, 1980, 44: 131-138. [19] 李春福, 陈复民, 李国俊, 等. 铍青铜(QBe2)的晶界不连续析出与时效工艺[J]. 稀有金属, 1988(2): 3-9. [20] Tsubakino H, Nozato R, Yamamoto A. Precipitation sequence for simultaneous continuous and discontinuous modes in Cu-Be binary alloys[J]. Materials Science and Technology, 1993, 9(4): 288-294. [21] Field D P, Bradford L T, Nowell M M, et al. The role of annealing twins during recrystallization of Cu[J]. Acta Materialia, 2007, 55(12): 4233-4241. [22] Wang W, Brisset F, Helbert A L, et al. Influence of stored energy on twin formation during primary recrystallization[J]. Materials Science and Engineering A, 2014, 589: 112-118. [23] Ma S, Fu L, Shan A. Enhancing strength-ductility of the aluminum bronze alloy by generating high-density ultrafine annealing twins[J]. Materials Characterization, 2021, 177: 111057. [24] Guan Y, Liu C, Gao Y, et al. Effect of annealing on microstructure and tensile properties of cold-rolled Cu-2.7Be sheets[J]. Materials Characterization, 2017, 129: 156-162. [25] Huang W, Chai L, Li Z, et al. Evolution of microstructure and grain boundary character distribution of a tin bronze annealed at different temperatures[J]. Materials Characterization, 2016, 114: 204-210. [26] Schneider M, George E, Manescau T, et al. Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy[J]. International Journal of Plasticity, 2020, 124: 155-169. [27] Pan Q, Jing L J, Lu L. Enhanced fatigue endurance limit of Cu through low-angle dislocation boundary[J]. Acta Materialia, 2023, 244: 118542. [28] 张伟玮, 赵之赫, 方继华, 等. Cu-2.0%Be合金中晶界析出相对弹性性能的影响[J]. 稀有金属材料与工程, 2021, 50(6): 2194-2200. Zhang Weiwei, Zhao Zhihe, Fang Jihua, et al. Effect of grain boundary precipitation on elastic properties of Cu-2.0%Be alloy[J]. Rare Metal Materials and Engineering, 2021, 50(6): 2194-2200. |