[1] Mo J O, Feng G H, Xu M, et al. Effect of annealing temperature on the evolution of copper-rich phases in antimicrobial stainless steels[J]. Materials Research Express, 2023, 10(2): 026519. [2] 赵金龙, 林鸿亮, 杨春光, 等. 含铜抗菌不锈钢的应用研究现状[J]. 中国冶金, 2022, 32(6): 26-41. Zhao Jinlong, Lin Hongliang, Yang Chunguang, et al. Application and research status of antibacterial Cu-bearing stainless steel[J]. China Metallurgy, 2022, 32(6): 26-41. [3] Xi T, Zhang X R, Yin X L, et al. Interfacial segregation and precipitation behavior of Cu-rich precipitates in Cu-bearing 316LN stainless steel after aging at different temperatures[J]. Materials Science and Engineering A, 2021, 805: 140571. [4] Li H Y, Gao L H, Song Y H, et al. Flow stress behavior and microstructure evolution of austenitic stainless steel with low copper content during hot compression deformation[J]. Crystals, 2021, 11(11): 1408. [5] Xi T, Shahzad M B, Xu D K, et al. Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study[J]. Materials Science and Engineering A, 2016, 675: 243-252. [6] Zhang X R, Yang C G, Yang K. Contact killing of Cu-bearing stainless steel based on charge transfer caused by the microdomain potential difference[J]. ACS Applied Materials and Interfaces, 2020, 12(1): 361-372. [7] 高建新, 孙晓萱, 李 杭, 等. 退火温度对含铜、银抗菌不锈钢组织和耐腐蚀性能的影响[J]. 热加工工艺, 2023, 52(14): 131-133. Gao Jianxin, Sun Xiaoxuan, Li Hang, et al. Effects of annealing temperature on microstructure and corrosion resistance of antibacterial stainless steel containing copper and silver[J]. Hot Working Technology, 2023, 52(14): 131-133. [8] 陈书航, 褚冉星, 赵苗苗, 等. 晶粒尺寸对316L不锈钢在模拟人体体液环境中腐蚀行为的影响[J]. 轧钢, 2024, 41(1): 49-53. Chen Shuhang, Chu Ranxing, Zhao Miaomiao, et al. Effect of grain size on corrosion behavior of 316L stainless steel in simulated body fluid environment[J]. Steel Rolling, 2024, 41(1): 49-53. [9] Challa V S A, Wan X L, Somani M C, et al. Significance of interplay between austenite stability and deformation mechanisms in governing three-stage work hardening behavior of phase-reversion induced nanograined/ultrafine-grained (NG/UFG) stainless steels with high strength-high ductility combination[J]. Scripta Materialia, 2014, 86: 60-63. [10] Misra R D K, Nayak S, Mali S A, et al. On the significance of nature of strain-induced martensite on phase-reversion-induced nanograined/ultrafine-grained austenitic stainless steel[J]. Metallurgical and Materials Transactions A, 2010, 41: 3-12. [11] 张 梅, 孙国胜, 秦岽烊, 等. 冷轧304不锈钢的马氏体逆相变及奥氏体再结晶行为[J]. 金属热处理, 2021, 46(7): 51-55. Zhang Mei, Sun Guosheng, Qin Dongyang, et al. Behavior of martensite reverse transformation and austenite recrystallization of cold-rolled 304 stainless steel[J]. Heat Treatment of Metals, 2021, 46(7): 51-55. [12] Sun G S, Zhao M M, Du L X, et al. Significant effects of grain size on mechanical response characteristics and deformation mechanisms of metastable austenitic stainless steel[J]. Materials Characterization, 2022, 184: 111674. [13] Luo K G, Xiong H Q, Zhang Y, et al. AA1050 metal matrix composites reinforced by high-entropy alloy particles via stir casting and subsequent rolling[J]. Journal of Alloys and Compounds, 2022, 893: 162370. [14] Wu Y Z, Luo K G, Zhang Y, et al. Microstructures and mechanical properties of a CoCrFeNiMn high-entropy alloy obtained by 223 K cryorolling and subsequent annealing[J]. Journal of Alloys and Compounds, 2022, 921: 166166. [15] Sun G S, Du L X, Hu J, et al. On the influence of deformation mechanism during cold and warm rolling on annealing behavior of a 304 stainless steel[J]. Materials Science and Engineering A, 2019, 746: 341-355. [16] Zhao M M, Wu H Y, Lu J N, et al. Effect of grain size on mechanical property and corrosion behavior of a metastable austenitic stainless steel[J]. Materials Characterization, 2022, 194: 112360. [17] Xi T, Shahzad M B, Xu D K, et al. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel[J]. Materials Science and Engineering C, 2017, 71: 1079-1085. [18] 赵苗苗. 奥氏体不锈钢纳米化组织性能调控与耐腐蚀机理研究[D]. 沈阳: 东北大学, 2023. Zhao Miaomiao. Study on microstructure-mechanical properties control and corrosion resistance mechanism of nanocrystallized austenitic stainless steel[D]. Shenyang: Northeastern University, 2023. |