[1] Lu K. Making strong nanomaterials ductile with gradients[J]. Science, 2014, 345: 1455-1456. [2] 刘沿东, 刘顺臻, 宋华丁, 等. 低碳马氏体钢的细晶强化机理及其力学性能[J]. 东北大学学报: 自然科学版, 2014, 35(4): 499-503. Liu Yandong, Liu Shunzhen, Song Huading, et al. Fine-grain strengthening mechanism of low-carbon martensite steel and its mechanical properties[J]. Journal of Northeastern University (Natural Science Edition), 2014, 35(4): 499-503. [3] 张家榕, 李艳芬, 王光全, 等. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636. Zhang Jiarong, Li Yanfen, Wang Guangquan, et al. Effects of heat treatment on microstructure and mechanical properties of a bimodal grain ultra-low carbon 9Cr-ODS steel[J]. Acta Metallurgica Sinica, 2022, 58(5): 623-636. [4] Tsuji N, Ueji R, Minamino Y, et al. A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property[J]. Scripta Materialia, 2001, 46(4): 305-310. [5] 龚志华, 王宝峰, 杨 钢, 等. 通道挤压变形奥氏体不锈钢中孪晶细化机理[J]. 金属热处理, 2009, 34(8): 36-39. Gong Zhihua, Wang Baofeng, Yang Gang, et al. Refinement mechanism of twins in austenitic stainless steel by equal channel angular pressing[J]. Heat Treatment of Metals, 2009, 34(8): 36-39. [6] 田 野, 李 萍, 王久林, 等. 高压扭转压力对304不锈钢组织及性能影响[J]. 塑性工程学报, 2016, 23(2): 98-102. Tian Ye, Li Ping, Wang Jiulin, et al. Influence of high-pressure torsion pressure on microstructure and mechanical property of 304 stainless steel[J]. Journal of Plastic Engineering, 2016, 23(2): 98-102. [7] Tsuji N, Shiotsuki K, Saito Y. Superplasticity of ultra-fine grained Al-Mg alloy produced by accumulative roll-bonding[J]. Materials Transactions, JIM, 2007, 40(8): 765-771. [8] Zhang Q X, Yuan Q, Wang Z T, et al. Enhanced mechanical properties in a low-carbon ultrafine grain steel by niobium addition[J]. Metallurgical and Materials Transactions A, 2021, 52: 5123-5132. [9] Azizi-Alizamini H, Militzer M, Poole W J. A novel technique for developing bimodal grain size distributions in low carbon steels[J]. Scripta Materialia, 2007, 57(12): 1065-1068. [10] Wang T S, Zhang F C, Zhang M, et al. A novel process to obtain ultrafine-grained low carbon steel with bimodal grain size distribution for potentially improving ductility[J]. Materials Science and Engineering A, 2008, 485(1/2): 456-460. [11] Hosseini S M, Alishahi M, Najafizadeh A, et al. The improvement of ductility in nano/ultrafine grained low carbon steels via high temperature short time annealing[J]. Materials Letters, 2012, 74: 206-208. [12] Hamzeh M, Kermanpur A, Najafizadeh A. Fabrication of the ultrafine-grained ferrite with good resistance to grain growth and evaluation of its tensile properties[J]. Materials Science and Engineering A, 2014, 593: 24-30. [13] Shin D H, Kim B C, Park K T, et al. Microstructural changes in equal channel angular pressed low carbon steel by static annealing[J]. Acta Materialia, 2000, 48: 3245-3252. |