[1] Lesuer D R, Syn C K, Sherby O D. Ultrahigh carbon steel for automotive applications[J]. SAE Transactions, 1996, 105: 384-393. [2] Wadsworth J, Sherby O D. History of ultrahigh carbon steels[J]. Office of Scientific & Technical Information Technical Reports, 1996. [3] Tsuchiya E, Matsumura Y, Hosoya Y, et al. Development of niobium bearing high carbon steel sheet for knitting needles[J]. ISIJ International, 2020, 60(5): 1052-1062. [4] Dey I, Saha R, Ghosh S K. Influence of microalloying and isothermal treatment on microstructure and mechanical properties of high carbon steel[J]. Metals and Materials International, 2022, 28(7): 1662-1677. [5] 顾炜华, 卓城之, 陆 忠, 等. 碳含量对铌微合金化高碳钢制金属针布耐磨性的影响[J]. 金属热处理, 2021, 46(12): 72-76. Gu Weihua, Zhuo Chengzhi, Lu Zhong, et al. Effect of carbon content on wear resistance of metal clothing made of Nb microalloyed high carbon steel[J]. Heat Treatment of Metals, 2021, 46(12): 72-76 [6] 孙曼丽, 江 波, 陈 刚, 等. Nb微合金化对高碳钢组织和性能的影响[J]. 金属热处理, 2016, 41(4): 71-74. Sun Manli, Jiang Bo, Chen Gang, et al. Effect of Nb microalloying on microstructure and mechanical properties of high carbon steel[J]. Heat Treatment of Metals, 2016, 41(4): 71-74. [7] 肖 莹, 赵 军. 高压对40Cr钢高温回火力学性能的影响[J]. 热加工工艺, 2020, 49(16): 156-158. Xiao Ying, Zhao Jun. Effect of high pressure on high temperature tempering mechanical properties of 40Cr steel[J]. Hot Working Technology, 2020, 49(16): 156-158 [8] Kimura K, Yamaoka S. Influence of high pressure normalizing heat treatment on microstructure and creep strength of high Cr steels[J]. Materials Science and Engineering A, 2004, 387: 628-632. [9] Wang Haiyan, Liu Jianhua, Peng Guirong, et al. Effects of high-pressure heat treatment on the solid-state phase transformation and microstructures of Cu61.13Zn33.94Al4.93 alloys[J]. Chinese Physics B, 2010, 19(9): 469-474. [10] Noda T, Kato H. Heat treatment of carbon under high pressure[J]. Carbon, 1965, 3(3): 289-290. [11] Wei Z, Jiang W, Zou C, et al. Microstructural evolution and mechanical strengthening mechanism of the high pressure heat treatment(HPHT)on Al-Mg alloy[J]. Journal of Alloys and Compounds, 2017, 692: 629-633. [12] 雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. [13] Cao D. Effect of high pressure heat treatment on the phase transformation dynamics of α+γ2→β in Cu-Al alloy[J]. Materials Research, 2020, 23(1): e20190569. [14] Gu T, Xu F, Zhao Y, et al. Effects of high pressure heat treatment on microstructure and mechanical properties of aluminum bronze[J]. Materials Research Express, 2019, 6(9): 096508. [15] Ma Y Q, Liu R C, Ma J W. Effects of high pressure treatment on the hardness and electrical resistivity of CuW alloy[J]. Recent Patents on Materials Science, 2014, 7(2): 164-168. [16] 陈 鑫, 崔 晴, 程子健, 等. 高压热处理诱导工业纯铁马氏体相变[J]. 钢铁, 2021, 56(10): 127-135. Chen Xin, Cui Qing, Cheng Zijian, et al. Higg-pressure heat treatment induced martensitic transformation of industrial pure iron[J]. Iron & Steel, 2021, 56(10): 127-135. [17] 刘 颖. 高压热处理对T8钢组织与硬度的影响[J]. 热加工工艺, 2013, 42(22): 188-189. Liu Ying. Effect of high pressure heat treatment on microstructure and hardness of T8 steel[J]. Hot Working Technology, 2013, 42(22): 188-189. [18] 陈久川, 米新兰, 张 晗, 等. 高压热处理对低碳钢组织和硬度的影响[J]. 热加工工艺, 2018, 47(12): 130-131, 136. Chen Jiuchuan, Mi Xinlan, Zhang Han, et al. Effects of high pressure heat treatment on microstructure and hardness of low carbon steel[J]. Hot Working Technology, 2018, 47(12): 130-131, 136. [19] Dong J, Zhou X, Liu Y, et al. Carbide precipitation in Nb-V-Ti microalloyed ultra-high strength steel during tempering[J]. Materials Science and Engineering A, 2017, 683: 215-226. [20] 李荣德, 曹修生, 曲迎东, 等. 超高压力对 ZA27 合金晶体结构及微观组织的影响[J]. 中国有色金属学报, 2009, 19(9): 1570-1574. Li Rongde, Cao Xiusheng, Qu Yingdong, et al. Effect of super high pressure on crystal structure and microstructure of ZA27 alloy[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(9): 1570-1574. [21] 李 翔, 康永林, 顾克井, 等. 铌微合金化高碳钢的连续冷却转变[J]. 钢铁研究学报, 2004, 16(3): 44-48. Li Xiang, Kang Yonglin, Gu Kejing, et al. Continuous cooling transformation of niobium microalloyed high carbon steels[J]. Journal of Iron and Steel Research, 2004, 16(3): 44-48. [22] Du P, Sun H, Kong L, et al. A study on recrystallization behavior and recrystallization texture of high pressure heat-treated Al-Mg alloy[J]. Journal of Materials Science, 2023, 58(6): 2876-2892. [23] Tao G, Shuaixin Z, Yuhong Z, et al. Effect of high-pressure aging treatment on microstructure and properties of Cu-51.15W-0.24C ralloy[J]. Rare Metal Materials and Engineering, 2021, 50(12): 4224-4229. [24] Du P, Sun H, Wang Z, et al. Effect of high pressure heat treatment on the recrystallization and recrystallization texture of CCAA 3003 aluminum alloy[J]. Journal of Materials Research and Technology, 2022, 19: 2388-2401. [25] 张大磊, 李媛媛. 高压热处理对TC9钛合金显微组织和力学性能的影响[J]. 机械工程材料, 2021, 45(8): 72-76. Zhang Dalei, Li Yuanyuan. Effect of high pressure heat treatment on microstructure and mechanical properties of TC9 titanium alloy[J]. Mechanical Engineering Materials, 2021, 45(8): 72-76. [26] Meng D L. Effect of high pressure heat treatment on microstructure and compressive properties of low carbon steel[J]. Journal of Materials Science and Engineening, 2018, 8(2): 45-48. [27] 杨小禹, 李笑笑, 佟 静, 等. 高压热处理对35CrMo钢组织与硬度的影响[J]. 金属热处理, 2022, 47(6): 119-122. Yang Xiaoyu, Li Xiaoxiao, Tong Jing, et al. Effect of high pressure heat treatment on microstructure and hardness of 35CrMo steel[J]. Heat Treatment of Metals, 2022, 47(6): 119-122. |