[1] 龙胜祥, 卢 婷, 李倩文, 等. 论中国页岩气“十四五”发展思路与目标[J]. 天然气工业, 2021, 41(10): 1-10. Long Shengxiang, Lu Ting, Li Qianwen, et al. Discussion on China's shale gas development ideas and goals during the 14 Five-Year Plan[J]. Natural Gas Industry, 2021, 41(10): 1-10. [2] 赵金洲, 任 岚, 蒋廷学, 等. 中国页岩气压裂十年: 回顾与展望[J]. 天然气工业, 2021, 41(8): 121-142. Zhao Jinzhou, Ren Lan, Jiang Tingxue, et al. Ten years of gas shale fracturing in China: Review and prospect[J]. Natural Gas Industry, 2021, 41(8): 121-142. [3] 刘统亮, 施建国, 冯 定, 等. 水平井可溶桥塞分段压裂技术与发展趋势[J]. 石油机械, 2020, 48(10): 103-110. Liu Tongliang, Shi Jianguo, Feng Ding, et al. Technical status and development trend of staged fracturing with dissoluble bridge plug in horizontal well[J]. China Petroleum Machinery, 2020, 48(10): 103-110. [4] 卢 刚. 页岩气水平井分段压裂作业中全可溶桥塞的应用[J]. 油气井测试, 2022, 31(5): 38-42. Lu Gang. Application of fully soluble bridge plug in staged fracturing of shale gas horizontal well[J]. Well Testing, 2022, 31(5): 38-42. [5] 刘 奔. 桥塞技术的发展历程及现状分析[J]. 石油矿场机械, 2021, 50(4): 81-87. Liu Ben. The development and current situation of bridge plug technology[J]. Oil Field Equipment, 2021, 50(4): 81-87. [6] Sun J, Du W, Fu J, et al. A review on magnesium alloys for application of degradable fracturing tools[J]. Journal of Magnesium and Alloys, 2022, 10(10): 2649-2672. [7] 刘宝胜, 董舸航, 张跃忠, 等. 压裂暂堵工具用可溶镁合金的研究进展[J]. 中国有色金属学报, 2022, 32(12): 3609-3631. Liu Baosheng, Dong Gehang, Zhang Yuezhong, et al. Research progress of soluble magnesium alloy for fracturing temporary plugging tools[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(12): 3609-3631. [8] Chen L, Wu Z, Xiao D H, et al. Effects of copper on the microstructure and properties of Mg-17Al-3Zn alloys[J]. Materials & Corrosion, 2015, 66(10): 1159-1168. [9] Wang J, Li H, Wang J, et al. Microstructure and properties of novel Mg-Al-Zn-Mn-Ca-Ni dissoluble alloy fabricated by industrial two-step extrusion method[J]. Metals, 2022, 12(4): 12040583. [10] Tan W, Li T S, Li S Z, et al. High strength-ductility and rapid degradation rate of as-cast Mg-Cu-Al alloys for application in fracturing balls[J]. Journal of Materials Science & Technology, 2021(35): 22-31. [11] Niu H, Deng K, Nie K, et al. Microstructure, mechanical properties and corrosion properties of Mg-4Zn-xNi alloys for degradable fracturing ball applications[J]. Journal of Alloys and Compounds, 2019, 787: 1290-1300. [12] Dobkowska A, Adamczyk-Cieślak B, Kuc D, et al. Influence of bimodal grain size distribution on the corrosion resistance of Mg-4Li-3Al-1Zn(LAZ431)[J]. Journal of Materials Research and Technology, 2021, 13: 346-358. [13] 吴 进, 罗 岚, 刘 勇, 等. Mg-Al系镁合金的耐蚀性能研究进展[J]. 腐蚀与防护, 2018, 39(9): 651-657. Wu Jin, Luo Lan, Liu Yong, et al. Research progression on the corrosion resistance of Mg-Al magnesium alloy[J]. Corrosion & Protection, 2018, 39(9): 651-657. [14] 陈佳俊, 唐昌平, 谢红梅, 等. 双峰分布晶粒在铜、铝、镁合金中的研究进展[J]. 材料热处理学报, 2022, 43(3): 1-10. Chen Jiajun, Tang Changping, Xie Hongmei, et al. Research progress of bimodal-grained structure in copper, aluminum, and magnesium alloys[J]. Transactions of Materials and Heat Treatment, 2022, 43(3): 1-10. [15] Li Z T, Qiao X G, Xu C, et al. Ultrahigh strength Mg-Al-Ca-Mn extrusion alloys with various aluminum contents[J]. Journal of Alloys and Compounds, 2019, 792: 130-141. [16] Xu C, Fan G H, Nakata T, et al. Deformation behavior of ultra-strong and ductile Mg-Gd-Y-Zn-Zr alloy with bimodal microstructure[J]. Metallurgical and Materials Transactions A, 2018, 49(5): 1931-1947. [17] Sun J, Yang Z, Han J, et al. High strength and ductility AZ91 magnesium alloy with multi-heterogenous microstructures prepared by high-temperature ECAP and short-time aging[J]. Materials Science and Engineering A, 2018, 734: 485-490. [18] Ralston K D, Birbilis N, Davies C. Revealing the relationship between grain size and corrosion rate of metals[J]. Scripta Materialia, 2010, 63(12): 1201-1204. [19] Niu H, Deng K, Nie K, et al. Degradation behavior of Mg-4Zn-2Ni alloy with high strength and high degradation rate[J]. Materials Chemistry and Physics, 2020, 249: 123131. |