[1] 李 毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(S1): 280-282. Li Yi, Zhao Yongqing, Zeng Weidong. Application and development of aerial titanium alloys[J]. Materials Reports, 2020, 34(S1): 280-282. [2] Williams J C, Boyer R R. Opportunities and issues in the application of titanium alloys for aerospace components[J]. Metals, 2020, 10(6): 705. [3] Zhao Q, Sun Q, Xin S, et al. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process[J]. Materials Science and Engineering A, 2022, 845: 143260. [4] Cai J H, Xin S W, Li L, et al. Effect of strain amounts on cold compression deformation mechanism of Ti-55531 alloy with bimodal microstructure[J]. Materials Science Forum, 2021, 1035: 182-188. [5] 刘全明, 张朝晖, 刘世锋, 等. 钛合金在航空航天及武器装备领域的应用与发展[J]. 钢铁研究学报, 2015, 27(3): 1-4. Liu Quanming, Zhang Zhaohui, Liu Shifeng, et al. Application and development of titanium alloy in aerospace and military hardware[J]. Journal of Iron and Steel Research, 2015, 27(3): 1-4. [6] Kolli R, Arun D A. A review of metastable beta titanium alloys[J]. Metals, 2018, 8(7): 506. [7] Cotton J D, Briggs R D, Boyer R R, et al. State of the art in beta titanium alloys for airframe applications[J]. JOM, 2015, 67(6): 1281-1303. [8] Santhosh R, Geetha M, Rao M N. Recent Developments in heat treatment of beta titanium alloys for aerospace applications[J]. Transactions of the Indian Institute of Metals, 2017, 70(7): 1681-1688. [9] Zhu C P, Zhang X Y, Li C, et al. A strengthening strategy for metastable β titanium alloys: Synergy effect of primary α phase and β phase stability[J]. Materials Science and Engineering A, 2022, 852: 143736. [10] 况云华, 辛周媛, 徐 勇, 等. 时效温度对TB15钛合金微观组织和力学性能影响[J]. 热加工工艺, 2024, 53(4): 146-150. Kuang Yunhua, Xin Zhouyuan, Xu Yong, et al. Effects of aging temperature on microstructure and mechanical properties of TB15 titanium alloy[J]. Hot Working Technology, 2024, 53(4): 146-150. [11] 辛周媛, 徐 勇, 胡生双, 等. TB15钛合金等温时效析出行为及相变动力学[J]. 特种铸造及有色合金, 2023, 43(9): 1252-1256. Xin Zhouyuan, Xu Yong, Hu Shengshuang, et al. Precipitation behavior and phase transition kinetics of TB15 titanium alloy during isothermal aging[J]. Special Casting and Nonferrous Alloys, 2023, 43(9): 1252-1256. [12] Dehghan-Manshadi A, Dippenaar R J. Development of α-phase morphologies during low temperature isothermal heat treatment of a Ti-5Al-5Mo-5V-3Cr alloy[J]. Materials Science and Engineering A, 2011, 528(3): 1833-1839. [13] Zhang H Y, Wang C, Zhang S Q, et al. Evolution of secondary α phase during aging treatment in novel near β Ti-6Mo-5V-3Al-2Fe alloy[J]. Materials, 2018, 11: 2283. [14] Huang C W, Zhao Y Q, Xin S W, et al. High cycle fatigue behavior of Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy with lamellar microstructure[J]. Materials Science and Engineering A, 2017, 682: 107-116. [15] Richards N L, Barnby J T. The relationship between fracture toughness and microstructure in alpha-beta titanium alloys[J]. Materials Science and Engineering, 1976, 26(2): 221-229. |