[1] Luo L, Jiang Z, Xiao Z, et al. Cracking and exfoliation behavior of oxide scale on T91 steel under different tensile stresses in oxygen-controlled lead-bismuth eutectic at 550 ℃[J]. Corrosion Science, 2021, 183: 109324. [2] Xu Y W, Song S H, Wang J W. Effect of rare earth cerium on the creep properties of modified 9Cr-1Mo heat-resistant steel[J]. Materials Letters, 2015, 161: 616-619. [3] Mashuku S, Wagatsuma K. Cathodoluminescence analysis of nonmetallic inclusions in steel deoxidized and desulfurized by rare-earth metals (La, Ce, Nd)[J]. Metallurgical and Materials Transactions B, 2020, 51: 79-84. [4] Wang H, Wang H, Wang H, et al. Effect of Ce on the cleanliness, microstructure and mechanical properties of high strength low alloy steel Q690E in industrial production process[J]. International Journal of Minerals Metallurgy and Materials, 2019, 26: 1372-1384. [5] Wang H, Xiong L, Zhang L, et al. Investigation of RE-O-S-As inclusions in high carbon steels[J]. Metallurgical and Materials Transactions B, 2017, 48: 2849-2858. [6] Li D. Low-oxygen rare earth steels[J]. Nature Materials, 2022, 21(10): 1137-1143. [7] 林 勤, 宋 波, 郭兴敏, 等. 钢中稀土微合金化作用与应用前景[J]. 稀土, 2001, 22(4): 31-36. Lin Qin, Song Bo, Guo Xingmin, et al. Effects of RE on microalloying in steel and application prospects[J]. Chinese Rare Earths, 2001, 22(4): 31-36. [8] 刘香军, 杨昌桥, 任慧平, 等. 固溶Ce对α-Fe力学性能影响的机理研究[J]. 功能材料, 2022, 53(8): 8024-8030. Liu Xiangjun, Yang Changqiao, Ren Huiping, et al. Mechanism study of effect of solute rare earth Ce on mechanical properties of α-Fe[J]. Journal of Functional Materials, 2022, 53(8): 8024-8030. [9] 王英虎, 郑淮北, 刘庭耀, 等. 固溶处理对53Cr21Mn9Ni4N耐热钢组织及碳化物的影响[J]. 金属热处理, 2022, 47(4): 39-45. Wang Yinghu, Zheng Huaibei, Liu Tingyao, et al. Effect of solid solution treatment on microstructure and carbides of 53Cr21Mn9Ni4N heat-resistant steel[J]. Heat Treatment of Metals, 2022, 47(4): 39-45. [10] 杨建栋, 谢碧君, 徐 斌, 等. 稀土Ce含量对S355NL低合金钢夹杂物及铸态组织与硬度的影响[J]. 金属热处理, 2024, 49(12): 122-128. Yang Jiandong, Xie Bijun, Xu Bin, et al. Effect of Ce content on inclusions and as-cast microstructure and hardness of S355NL low alloy steel[J]. Heat Treatment of Metals, 2024, 49(12): 122-128. [11] 史学红, 杨礼林, 夏 明, 等. 稀土Ce含量对4Cr5MoSiV1钢中夹杂物的变质作用[J]. 金属热处理, 2022, 47(11): 223-229. Shi Xuehong, Yang Lilin, Xia Ming, et al. Modification effect of rare earth Ce content on inclusions in 4Cr5lMoSiV1 steel[J]. Heat Treatment of Metals, 2022, 47(11): 223-229. [12] Wang H, Bao Y P, Zhi J G, et al. Effect of rare earth Ce on the morphology and distribution of Al2O3 inclusions in high strength IF steel containing phosphorus during continuous casting and rolling process[J]. ISIJ International, 2021, 61(3): 657-666. [13] Geng R, Li J, Shi C. Evolution of inclusions with Ce addition and Ca treatment in Al-killed steel during RH refining process[J]. ISIJ International, 2021, 61(5): 1506-1513. [14] Zhao Y, Shi C B, Wang S J, et al. Reoxidation of liquid steel and evolution of inclusions during protective atmosphere electroslag remelting of Ce-containing heat-resistant stainless steel[J]. Journal of Iron and Steel Research International, 2024, 31(8): 1923-1935. [15] Jiang X, Li G, Tang H, et al. Modification of inclusions by rare earth elements in a high-strength oil casing steel for improved sulfur resistance[J]. Materials, 2023, 16(2): 675. [16] Wang X, Li G, Liu Y, et al. Cerium addition effect on modification of inclusions, primary carbides and microstructure refinement of H13 die steel[J]. ISIJ International, 2021, 61(6): 1850-1859. [17] Huang Y, Jin X, Cai G. Evolution of microstructure and mechanical properties of a new high strength steel containing Ce element[J]. Journal of Materials Research, 2017, 32(20): 3894-3903. [18] Jiang M Z, Yu Y C, Li H, et al. Effect of rare earth cerium addition on microstructures and mechanical properties of low carbon high manganese steels[J]. High Temperature Materials and Processes, 2017, 36(2): 145-153. [19] Yan J, Gao Y, Liang L, et al. Effect of yttrium on the cyclic oxidation behaviour of HP40 heat-resistant steel at 1373 K[J]. Corrosion Science, 2011, 53(1): 329-337. [20] 罗杰斌, 黄 勇, 王 帅, 等. 稀土改性铸造Fe-24Cr-32Ni型耐热钢高温氧化行为的研究[J]. 铸造, 2023, 72(1): 22-27. Luo Jiebin, Huang Yong, Wang Shuai, et al. Study on high temperature oxidation behavior of cast Fe-24Cr-32Ni steel modifed by rare earth[J]. Foundry, 2023, 72(1): 22-27. [21] Chen L, Ma X, Wang L, et al. Effect of rare earth element yttrium addition on microstructures and properties of a 21Cr-11Ni austenitic heat-resistant stainless steel[J]. Materials & Design, 2011, 32(4): 2206-2212. [22] Wang R, Bao Y P Yan Z J, et al. Comparison between the surface defects caused by Al2O3 and TiN inclusions in interstitial-free steel auto sheets[J]. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(2): 178-185. [23] 富晓阳, 杨吉春, 蒋学智, 等. Ce对T91耐热钢夹杂物的变质及冲击韧性的影响[J]. 稀土, 2015, 36(5): 60-65. Fu Xiaoyang, Yang Jichun, Jiang Xuezhi, et al. Effects of Ce on the inclusions and impact toughness of T9l heat-resistant steel[J]. Chinese Rare Earths, 2015, 36(5): 60-65. [24] Gu C, Bao Y P, Gan P, et al. Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime[J]. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(6): 623-629. [25] Yong X, Zhiguo C, Xiang W, et al. Influence of Ce on microstructure and properties of high-carbon high-boron steel[J]. Rare Metal Materials and Engineering, 2015, 44(6): 1335-1339. [26] Adabavazeh Z, Hwang W, Su Y. Effect of adding cerium on microstructure and morphology of Ce-based inclusions formed in low-carbon steel[J]. Scientific Reports, 2017, 7(1): 46503. [27] 黄 宇, 成国光, 谢 有. 稀土Ce对钎具钢中夹杂物的改质机理研究[J]. 金属学报, 2018, 54(9): 1253-1261. Huang Yu, Cheng Guoguang, Xie You. Modification mechanism of cerium on the inclusions in drill steel[J]. Acta Metallurgica Sinica, 2018, 54(9): 1253-1261. [28] 王佳喜, 王东伟, 邱国兴, 等. 外加Y2Ti2O7纳米粒子对CLAM钢夹杂物的影响[J]. 北京科技大学学报, 2020, 42(S1): 21-26. Wang Jiaxi, Wang Dongwei, Qiu Guoxing, et al. Effect of Y2Ti2O7 nanoparticles on inclusions in CLAM steel[J]. Journal of University of Science and Technology Beijing, 2020, 42(S1): 21-26. |