金属热处理 ›› 2025, Vol. 50 ›› Issue (8): 103-109.DOI: 10.13251/j.issn.0254-6051.2025.08.018

• 工艺研究 • 上一篇    下一篇

激光功率对18CrNiMo渗碳钢淬火层组织与性能的影响

王冰1, 孙瀚1, 程战1, 吴元科2, 钟素娟1,3, 龙伟民1,3, 关常勇4   

  1. 1.中国机械总院集团宁波智能机床研究院有限公司, 浙江 宁波 315700;
    2.中铁工程装备集团有限公司, 河南 郑州 450047;
    3.中国机械总院集团郑州机械研究所有限公司 新型钎焊材料与技术国家重点实验室, 河南 郑州 450001;
    4.山东索力得焊材股份有限公司, 山东 肥城 271600
  • 收稿日期:2025-03-09 修回日期:2025-06-29 出版日期:2025-08-25 发布日期:2025-09-10
  • 作者简介:王 冰(1991—),男,工程师,博士,主要研究方向为激光淬火,E-mail:nicebing1135@163.com
  • 基金资助:
    浙江省博士后择优项目(ZJ2021079)

Effect of laser quenching power on microstructure and properties of 18CrNiMo carburized steel

Wang Bing1, Sun Han1, Cheng Zhan1, Wu Yuanke2, Zhong Sujuan1,3, Long Weimin1,3, Guan Changyong4   

  1. 1. China Academy of Machinery Ningbo Academy of Intelligent Machine Tool Co., Ltd., Ningbo Zhejiang 315700, China;
    2. China Railway Engineering Equipment Group Co., Ltd., Zhengzhou Henan 450047, China;
    3. State Key Laboratory of Advanced Brazing Filler Metals & Technology, China Academy of Mechinery Zhengzhou Research Institute of Mechanical Engineering Co., Ltd., Zhengzhou Henan 450001, China;
    4. Shandong Solid Solder Co., Ltd., Feicheng Shandong 271600, China
  • Received:2025-03-09 Revised:2025-06-29 Online:2025-08-25 Published:2025-09-10

摘要: 通过对激光淬火层截面宏观形貌、微观组织、物相构成、表面与截面硬度及摩擦磨损性能进行分析,探究不同激光功率对18CrNiMo渗碳钢激光淬火层组织和性能的影响。结果表明,淬火层宽度、深度均与激光功率呈正相关关系,激光功率为1000 W时淬火层产生细密的针状马氏体组织,激光功率达到1300 W时马氏体组织变粗大,碳化物含量增大,钢基体表面出现热损伤。激光淬火后钢中物相为Fe-Cr相、Cr7C3和马氏体,衍射峰宽度增大说明激光淬火对钢基体表面起到细晶强化的作用。当激光功率为1000 W时,淬火层表面硬度达到最大值,为63.3 HRC(780 HV0.5),相较于钢基体提高了约13%,激光功率过高时钢基体表面发生熔融,导致硬度降低,不同激光功率下淬火层截面显微硬度最大值相近,均在800 HV0.5左右。在相同摩擦磨损条件下,激光功率为1000 W时,试样磨损量为0.5 mg,相比于未淬火的钢基体降低约87%,磨损区域末端与中段的磨损方式主要分别为粘着磨损和磨粒磨损。

关键词: 激光淬火, 18CrNiMo渗碳钢, 微观组织, 硬度, 摩擦磨损

Abstract: By analyzing the macroscopic morphology, microstructure, phase composition, surface and section hardness, and friction and wear properties of the laser quenched layer, the effect of different laser powers on the microstructure and properties of the laser quenched layer of 18CrNiMo carburized steel was explored. The results show that the width and depth of the quenched layer are positively correlated with the laser power, and the quenched layer produces a fine acicular martensite microstructure when the laser power is 1000 W, and when the laser power reaches 1300 W, the martensite becomes coarser, the carbide content increases, and thermal damage occurs on the surface of the steel. The phases generated on the surface of the steel after laser quenching are Fe-Cr phase, Cr7C3, and martensite. The diffraction peak width of XRD testing increases, indicating that laser quenching has a fine grain strengthening effect on the surface of the steel. When the laser power is 1000 W, the surface hardness of the quenched layer reaches the maximum value of 63.3 HRC (780 HV0.5), which is about 13% higher than that of the steel substrate. Excessive laser power causes melting on the surface of steel, resulting in a decrease in hardness, and the maximum microhardness of the quenched layer cross-section under different laser powers is similar, all of which are about 800 HV0.5. Under the same friction-wear conditions, the wear loss is 0.5 mg when laser power is 1000 W, which is about 87% lower than that of the unquenched steel. After friction-wear test, it can be seen that the wear modes at the end and middle of the wear region are mainly adhesive wear and abrasive wear, respectively.

Key words: laser quenching, 18CrNiMo carburized steel, microstructure, hardness, friction-wear

中图分类号: