[1] Takegahana J, Koyama M, Jinno K, et al. Angular contact ball bearings for high-speed and heavy-cutting machine tools[J]. NTN Technical Review, 2018, 86: 56-61. [2] Yang L Q, Xue W H, Gao S Y, et al. Effects of primary carbide size and type on the sliding wear and rolling contact fatigue properties of M50 bearing steel[J]. Acta Metallurgica Sinica, 2023, 36: 1336-1352. [3] Chang Z, Jia Q, Yuan X, et al. Main failure mode of oil-air lubricated rolling bearing installed in high speed machining[J]. Tribology International, 2017, 112: 68-74. [4] 张国松, 崔洪芝, 程贵勤. GCr15钢气体渗氮+淬火复合处理及干摩擦行为[J]. 中国表面工程, 2016, 29(6): 30-37. Zhang Guosong, Cui Hongzhi, Cheng Guiqin. Friction and wear behaviors of gas nitriding and quenching compound treatment of GCr15 steels[J]. China Surface Engineering, 2016, 29(6): 30-37. [5] Bhattacharyya A, Subhash G, Arakere N, et al. Influence of residual stress and temperature on the cyclic hardening response of M50 high-strength bearing steel subjected to rolling contact fatigue[J]. Journal of Engineering Materials and Technology, 2015, 138(2): 021003. [6] Xu H Q, Wang J G, Wang Q J. Influencing factors of fatigue life for rolling bearings[J]. Bearing, 2016, 5: 58-64. [7] Rydel J J, Caraballo T, Guetard G, et al. Understanding the factors controlling rolling contact fatigue damage in VIM-VAR M50 steel[J]. International Journal of Fatigue, 2017, 108: 68-78. [8] Matsunagaa H, Komatad H, Yamabe J. Effect of size and depth of small defect on the rolling contact fatigue strength of bearing steel JIS-SUJ2[J]. Procedia Materials Science, 2014, 3: 1663-1668. [9] 蒋港辉, 李淑欣, 蒲吉斌, 等. 马氏体轴承钢碳氮共渗滚动接触疲劳失效机理[J]. 中国表面工程, 2022, 35(2): 12-23. Jiang Ganghui, Li Shuxin, Pu Jibin, et al. Rolling contact fatigue failure mechanism of martensitic bearing steel after carbonitriding[J]. China Surface Engineering, 2022, 35(2): 12-23. [10] Trojahn W, Valentin P. Bearing steel quality and bearing performance[J]. Materials Science and Technology, 2012, 28: 55-57. [11] Tsunekage N, Hashimoto K, Fujimatsu T. Initiation Behavior of Crack Originated from Non-metallic Inclusion in Rolling Contact Fatigue[M]// Beswick J M. Bearing Steel Technology, 8th Volume: Developments in Rolling Bearing Steels and Testing. West Conshohocken, PA: ASTM International, 2010. [12] Hashimoto K, Hiraoka K, Kida K, et al. Effect of sulphide inclusions on rolling contact fatigue life of bearing steels[J]. Materials Science and Technology, 2012, 28(1): 39-43. [13] Guan J, Wang L Q, Zhang C W. Effects of non-metallic inclusions on the crack propagation in bearing steel[J]. Tribology International, 2017, 106: 123-131. [14] Moroz A N, Glotka A A. Effect of the temperature of hot rolling on formation of microdiscontinuities on nonmetallic inclusions in steel ShKh15SG[J]. Metal Science and Heat Treatment, 2017, 58: 574-577. [15] 周丽娜, 唐光泽, 马欣新, 等. M50钢碳分配过程中的组织演化[J]. 材料热处理学报, 2018, 39(1): 77-83. Zhou Lina, Tang Guangze, Ma Xinxin, et al. Microstructure evolution of M50 steel during carbon partitioning process[J]. Transactions of Materials and Heat Treatment, 2018, 39(1): 77-83. [16] 扈林庄, 王姗姗, 王 浩, 等. 碳氮共渗GCr15钢的组织及性能[J]. 轴承, 2023(7): 52-56. Hu Linzhuang, Wang Shanshan, Wang Hao, et al. Microstructure and properties of GCr15 steel carbonitrided[J]. Bearing, 2023(7): 52-56. [17] 单琼飞, 王 鑫, 薛文方, 等. GCr15钢碳氮共渗与马氏体淬火组织及性能试验对比研究[J]. 哈尔滨轴承, 2021, 42(2): 28-31. Shan Qiongfei, Wang Xin, Xue Wenfang, et al. Comparative study on microstructure and properties of GCr15 steel after carbonitriding and martensite quenching[J]. Journal of Harbin Bearing, 2021, 42(2): 28-31. [18] Guetard G, Toda-Caraballo I. Damage evolution around primary carbides under rolling contact fatigue in VIM-VAR M50[J]. International Journal of Fatigue, 2016, 91: 59-67. [19] Guan J, Wang L Q, Li Y F, et al. Influence of rough surface on damage evolution and fatigue life of M50-bearing steel containing a spherical inclusion[J]. International Journal of Damage Mechanics, 2019, 28(10): 1580-1604. [20] Guan J, Wang L Q, Zhang Z Q, et al. Fatigue crack nucleation and propagation at clustered metallic carbides in M50 bearing steel[J]. Tribology International, 2017, 119: 165-174. [21] Wang F, Qian D S, Hua L, et al. Effect of high magnetic field on the microstructure evolution and mechanical properties of M50 bearing steel during tempering[J]. Materials Science and Engineering A, 2019, 771: 138623. [22] Su J, Qian D S, Wang F. Effect of prior cold ring rolling on carbide dissolution during the austenitizing process of an M50 bearing steel[J]. Materials Express, 2020, 10(7): 1010-1019. [23] Rai A K, Nainaparampi J. Interaction of fomblin© lubricant with surface nitrided and/or coated bearing (M50) steel[J]. Lubrication Science, 2009, 21(8): 305-320. [24] Cao X J, Pyounb Y S, Murakami R. Fatigue properties of a S45C steel subjected to ultrasonic nanocrystal surface modification[J]. Applied Surface Science, 2010, 256: 6297-6303. [25] Qin H F, Ren Z C, Zhao J Y, et al. Effects of ultrasonic nanocrystal surface modification on the wear and micropitting behavior of bearing steel in boundary lubricated steel-steel contacts[J]. Wear, 2017, 392-393: 29-38. [26] 田 斌, 岳 文. 超声表面加工和硫氮共渗复合处理对35CrMo钢表面性能的影响[J]. 中国表面工程, 2016, 29(1): 103-110. Tian Bin, Yue Wen. Influences of ultrasonic surface processing and nitriding-sulphurizing treatments on surface properties of 35CrMo steel[J]. China Surface Engineering, 2016, 29(1): 103-110. [27] Vieillard C, Brizmer V, Kadin Y, et al. Benefits of hybrid bearings in severe conditions[J]. Evolution, 2017(3): 21-26. |